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We introduce a GPU-accelerated Monte Carlo framework for nonconvex, free-final-
time trajectory optimization problems. This framework makes use of the prox-linear
method, which belongs to the larger family of sequential convex programming (SCP)
algorithms, in conjunction with a constraint reformulation that guarantees inter-
sample constraint satisfaction. Key features of this framework are: (1) continuous-
time constraint satisfaction; (2) a matrix-inverse-free solution method; (3) the use
of the proportional-integral projected gradient (PIPG) method, a first-order convex
optimization solver, customized to the convex subproblem at hand; and, (4) an end-to-
end, library-free implementation of the algorithm. We demonstrate this GPU-based
framework on the 6-DoF powered-descent guidance problem, and show that it is
faster than an equivalent serial CPU implementation for Monte Carlo simulations
with over 1000 runs. To the best of our knowledge, this is the first GPU-based
implementation of a general-purpose nonconvex trajectory optimization solver.

Notation
Rn =Rn×1 Vectors are matrices with one column
1n, 0n Vector of ones and zeros, respectively, in Rn (subscript inferred whenever omitted)
0n×m Matrix of zeros in Rn×m

In Identity matrix in Rn×n

V[1:n] Collection of vectors or matrices Vk, for k = 1, . . . , n

|v|+ □ 7→ max{0,□} applied element-wise for vector v

v2 □ 7→ □2 applied element-wise for vector v

(u, v) Concatenation of vectors u ∈ Rn and v ∈ Rm to form a vector in Rn+m

[A B] Concatenation of matrices A and B with same number of rows[
A
B

]
Concatenation of matrices A and B with same number of columns

I. Introduction
Monte Carlo analysis is critical for certifying the safety and performance of guidance, navigation, and control
(GNC) systems [1]. For a 6-DoF powered-descent guidance algorithm, Monte Carlo analysis would involve
generating hundreds or even thousands of dispersed initial conditions around the nominal initial condition,
computing trajectories with these initial conditions, and assessing statistics such as solve-times, percentage of
converged trajectories, and propellant consumption. However, generating thousands of trajectories serially can be
time consuming, and can lead to increased development times. Since Monte Carlo simulation is embarrassingly
parallel [2], we propose performing Monte Carlo analyses on a graphics processing unit (GPU) to exploit its
parallel computing capability.
Due to their parallel computing capability and high memory bandwidth, GPUs have become increasingly popular
in fields that require solving large-scale problems (in which parallelism can be exploited). Most notably, GPUs have
become a staple in machine learning for training deep learning models. For example, OpenAI has a supercomputer
with 10,000 GPUs to train its large language models [3], and Tesla, reportedly, also has a 10,000-GPU cluster
to perform training for its machine learning-based full self-driving technology [4]. Additionally, many modern
machine learning tools such as JAX, TensorFlow, and PyTorch, provide programmers with user-friendly, high-level
interfaces to leverage the compute power of GPUs [5–7].
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GPUs have also been used outside of machine learning for a variety of tasks. For example, [8] uses a GPU for
running projectile simulations, i.e., propagating the equations of motion for a projectile, in parallel. In [9], the
authors develop a framework to perform trajectory optimization on GPUs; however, they consider a restrictive
trajectory optimization problem template that does not model dynamics or generic nonconvex path constraints.
The only constraints considered are maximum speed, maximum acceleration, and keepout zone constraints. As a
result, the generated trajectories are not guaranteed to obey the equations of motion of the vehicle.
In this paper, we demonstrate a GPU-based parallelized implementation for Monte Carlo analysis of trajectory
optimization problems with general nonlinear dynamics and nonconvex path constraints. The solutions obtained
are guaranteed to be feasible with respect to the original nonlinear dynamics, and all the imposed constraints are
guaranteed to be satisfied at all points in time, i.e., in continuous-time (subject to successful convergence and
up to numerical integration and optimization tolerances). This final guarantee on continuous-time constraint
satisfaction is a result of the problem formulation proposed in [10]. To demonstrate this framework, we consider
the 6-DoF powered-descent guidance algorithm [11].
The propellant-optimal powered-descent guidance (PDG) problem is concerned with finding a feasible sequence
of control inputs that allows a vehicle to decelerate itself from some initial position and velocity, to perform a
soft landing at some specified target on the ground, while satisfying a variety of state and control constraints.
This problem, in general, is of great importance to companies like SpaceX that land their boosters propulsively,
allowing them to make launches cheaper [12], and for NASA JPL, to land their rovers near important scientific
targets on Mars [13], for example. Solving the 3-DoF PDG problem, where only translational dynamics are
considered, is one approach to solving this problem. However, since this method does not explicity consider
attitude dynamics, attitude constraints, such as line-of-sight, cannot be enforced directly. For applications such as
NASA’s Safe and Precise Landing — Integrated Capabilities Evolution (SPLICE) project, the terrain relative
navigation (TRN) cameras and hazard detection LiDAR (HDL) require constraining the attitude of the rocket,
necessitating the use of 6-DoF PDG algorithms [14].
General trajectory optimization problems, such as the 6-DoF PDG problem, can be posed as nonconvex optimization
problems in continuous-time [15]. Given the nonconvexity of these problems, it is typically prohibitively expensive,
if not outright impossible, to obtain globally optimal trajectories. As a result, we must turn to solution procedures,
such as sequential convex programming (SCP) [16], that yield locally optimal solutions. At a high level, SCP
involves (1) convexification (often via linearization) of all nonconvex constraints about some reference trajectory
to yield an infinite-dimensional convex optimization problem; (2) discretization, to convert the problem to a
numerically tractable finite-dimensional convex optimization problem; and finally (3) finding a solution to this
finite-dimensional convex subproblem to update the reference trajectory. This process is applied iteratively until
convergence. As the name suggests, this process is inherently sequential in nature. However, we can leverage
parallelism to simultaneously solve for many trajectories in Monte Carlo analysis.
There are a number of factors that make developing a GPU-based parallelized implementation of SCP challenging.
SCP requires the use of many linear algebra operations and the solution to a sequence of convex optimization
subproblems. For a CPU-based implementation, we can use linear algebra packages such as openblas [17]
and open-source convex optimization solvers such as osqp and ecos [18, 19]. However, openblas binaries are
compiled for CPU architectures and NVIDIA’s linear algebra libraries, cublas and cusparse, are written such
that functions from these libraries must be called by the CPU, even though the computations are performed
on the GPU. This is undesirable for our implementation of SCP, since we require all computations for a single
trajectory to be performed by a single GPU thread. Similarly, although a GPU-accelerated implementation
of osqp exists, the solver itself must be called by the CPU [20]. Although off-the-shelf convex optimization
solvers could be modified to work on the GPU, custom parser frameworks are typically required—to put the
convex subproblem in the canonical form prior to being passed to the solver—as well [21, 22]. Thus, for our
GPU-based implementation of SCP, we implement Level 1, 2, and 3 BLAS operations for discretization and other
such operations, and the first-order proportional-integral projected gradient (pipg) solver [23, 24], customized to
the trajectory optimization problem template [25, 26], allowing us to bypass parsing entirely. Further, as in the
sequential conic optimization (seco) framework described in [26], this framework completely eliminates the need
for sparse linear algebra operations, is entirely matrix-factorization/inversion-free, and is implemented using a
library-free codebase.

II. Problem Formulation
We consider a continuous-time dynamical system of the form:

dξ(t)
dt

= ξ̇(t) = F (ξ(t), ζ(t)) (1)
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for t ∈ [0, tf ], with state ξ ∈ Rnξ and control input ζ ∈ Rnζ , which are subject to path constraints:

g(ξ(t), ζ(t)) ≤ 0ng
(2a)

h(ξ(t), ζ(t)) = 0nh
(2b)

where g and h are vector-valued functions. The operators “≤” and “=” are interpreted element-wise. Boundary
conditions at the initial and final times could also be specified.
The goal of trajectory optimization is to generate a solution ξ(t), ζ(t) for (1) that satisfies the path constraints,
boundary conditions, and optimizes a linear function of the terminal state ξ(tf), i.e., solve the following Mayer
form optimal control problem [27, Sec. 3.3.2]:

minimize
tf , ξ, ζ

ξ(tf)⊤ecost (3a)

subject to ξ̇(t) = F (ξ(t), ζ(t)) t ∈ [0, tf ] (3b)
g(ξ(t), ζ(t)) ≤ 0 t ∈ [0, tf ] (3c)
h(ξ(t), ζ(t)) = 0 t ∈ [0, tf ] (3d)
Eiξ(0) = zi, Efξ(tf) = zf (3e)

where Ei ∈ Rni×nξ and Ef ∈ Rnf×nξ select components of the initial and final state, respectively.

A. Time-Dilation and Constraint Reformulation
When the final time, tf , is an unknown, we adopt a well-known technique called time-dilation [10, 24, 28] to
convert a free-final-time problem to an equivalent fixed-final-time problem:

dξ(t(τ))
dτ

=
◦
ξ(τ) = dξ(τ)

dt
s(τ) = s(τ)F (ξ(τ), ζ(τ)) (4)

for τ ∈ [0, 1], where t(τ) is a strictly increasing function with domain [0, 1]. Note that ξ and ζ are re-defined to be
functions of τ ∈ [0, 1] instead of t. The dilation factor:

s(τ) = dt(τ)
dτ

is treated as an additional control input and is required to be positive. The control input is then re-defined to be
u = (ζ, s), and the final time is given by:

tf =
∫ 1

0
s(τ)dτ

Next, to address the long-standing issue of inter-sample constraint violation in direct methods [29], we augment
the path constraints to the time-dilated system dynamics (4) as follows:

◦
x(τ) =

[◦
ξ(τ)
◦
y(τ)

]
= s(τ)

[
F (ξ(τ), ζ(τ))

1⊤|g(ξ(τ), ζ(τ))|2+ + 1⊤h(ξ(τ), ζ(τ))2

]
= f(x(τ), u(τ)) (5)

for τ ∈ [0, 1], where x = (ξ, y) is the re-defined state. Periodic boundary condition on the constraint violation
integrator:

y(0) = y(1) (6)

ensure that the path constraints are satisfied for all τ ∈ [0, 1]. We refer the reader to [10, 30] for further details.

B. Discretization
Discretization is a crucial step in direct numerical optimal control for computational tractability, i.e., for obtaining
an approximate finite-dimensional optimization problem from the original infinite-dimensional optimal control
problem. The first step is to generate a grid with N nodes within the interval [0, 1]:

0 = τ1 < . . . < τN = 1 (7)

The time duration over sub-interval [τk, τk+1] is given by:

∆tk =
∫ τk+1

τk

s(τ)dτ
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for k = 1, . . . , N − 1, and the following constraints are specified on the dilation factor and time duration:

smin ≤ s(τ) ≤ smax

tf =
N−1∑
k=1

∆tk ≤ tf,max

∆tmin ≤ ∆tk ≤ ∆tmax

Next, we parameterize the control input with a first-order-hold (FOH):

u(τ) =
(

τk+1 − τ

τk+1 − τk

)
uk +

(
τ − τk

τk+1 − τk

)
uk+1

for τ ∈ [τk, τk+1] and k = 1, . . . , N − 1. In practice, the combination of time-dilation and FOH parameterization
for control input is sufficient for accurately modeling a large class of optimal control problems. See [1] for a
detailed discussion on the relative merits of popular discretization and parameterization techniques in numerical
optimal control.
We treat the node-point values of the state and control input, xk and uk, respectively, as decision variables, and
re-write the system dynamics (5) equivalently as:

xk+1 = xk +
∫ τk+1

τk

f(x(τ), u(τ))dτ (8)

for k = 1, . . . , N − 1, where x(τ) is the solution to (5) over [τk, τk+1] with initial condition xk, and u(τ) is
FOH-parameterized using uk and uk+1. Then, (8) can be compactly expressed through function fk : Rnx ×Rnx ×
Rnu × Rnu → Rnx as follows:

xk+1 = fk(xk, uk, uk+1) (9)

The boundary condition (6) is relaxed to:
yk+1 − yk ≤ ϵ

for k = 1, . . . , N − 1 and a sufficiently small ϵ > 0, so that all feasible solutions do not violate LICQ [10]. Note
that yk is the value of the state y in (5) at node τk.
The discretized optimal control problem with parameterized control input is given by:

minimize
xk,uk

x⊤N ẽcost (10a)

subject to xk+1 = fk(xk, uk, uk+1) k = 1, . . . , N − 1 (10b)
Ey(xk+1 − xk) ≤ ϵ k = 1, . . . , N − 1 (10c)
umin ≤ uk ≤ umax k = 1, . . . , N (10d)
Ẽix1 = (zi, 0), ẼfxN = zf (10e)

where

ẽcost = (ecost, 0) (11)
Ey = [01×nξ

1] (12)

Ẽi =
[

Ei 0nξ

01×nξ
1

]
(13)

Ẽf =
[
Ef 0nξ

]
(14)

C. Sequential Convex Programming
We adopt the prox-linear method [31], an SCP algorithm, to solve:

minimize
xk,uk

x⊤N ẽcost + wep

N−1∑
k=1
∥xk+1 − fk(xk, uk, uk+1)∥1 (15a)

subject to Ey(xk+1 − xk) ≤ ϵ (15b)
umin ≤ uk ≤ umax (15c)
Ẽix1 = (zi, 0), ẼfxN = zf (15d)
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where the (only) nonconvex constraint of (10) is exactly penalized with ℓ1-norm. For a large enough, finite wep,
we can show that a solution of (15) that is feasible with respect to (10b) is also a solution of (10). See [32, Chap.
17] for a detailed discussion.
The penalized problem (15) can be compactly stated as:

minimize
Z∈Z

L(Z) + wep∥G(Z)∥1 (16)

where Z = (x1, . . . , xN , u1, . . . , uN ) and Z is a convex set corresponding to constraints (15b), (15c), and (15d).
The prox-linear method determines a stationary point of (16) by solving a sequence of convex subproblems. At
iteration j + 1, it solves the following convex problem:

minimize
Z∈Z

L(Z) + wep∥G(Zj) +∇G(Zj)(Z − Zj)∥1 + wprox

2 ∥Z − Zj∥2
2 (17)

where Zj is the solution from iteration j. The sequence Zj can be shown to converge for an appropriate choice of
the proximal term weight wprox. Further, if the converged point is feasible for (10), then it is also a KKT point.
There are two important steps in the construction of each convex subproblem–(1) computation of ∇G: the
gradient of fk with respect to the previous iterate, and (2) prescaling and preconditioning.

1. Gradient of Discretized Dynamics
At each iteration of SCP, the discretized dynamics constraint (10b) is linearized with respect to the previous
iterate, denoted by x̄k, ūk, for k = 1, . . . , N .
For each k = 1, . . . , N − 1, let x̄k(τ) denote the solution to (5) over [τk, τk+1] generated with initial condition x̄k

and control input ū(τ), which is parameterized using ūk, for k = 1, . . . , N . Note that, in general, x̄k(τk+1) ̸= x̄k+1
before SCP converges [24].
The Jacobians of f in (5), evaluated with respect to x̄k(τ), ū(τ), are denoted by:

Ak(τ) = ∂f(x̄k(τ), ū(τ))
∂x

Bk(τ) = ∂f(x̄k(τ), ū(τ))
∂u

for τ ∈ [τk, τk+1].
The discretized dynamics constraint (8) is linearized as follows:

xk+1 = Akxk + B−k uk + B+
k uk+1 + wk (18)

for k = 1, . . . , N − 1, where Ak, B−k , B+
k , wk result from the solution to the following initial value problem over

τ ∈ [τk, τk+1]:
◦
Φx(τ, τk) = Ak(τ)Φx(τ, τk)
◦
Φ−u (τ, τk) = Ak(τ)Φ−u (τ, τk) + Bk(τ)

(
τk+1 − τ

τk+1 − τk

)
◦
Φ+

u (τ, τk) = Ak(τ)Φ+
u (τ, τk) + Bk(τ)

(
τ − τk

τk+1 − τk

)
Φx(τk, τk) = Inx

Φ−u (τk, τk) = 0nx×nu

Φ+
u (τk, τk) = 0nx×nu

Ak = Φx(τk+1, τk)
B−k = Φ−u (τk+1, τk)
B+

k = Φ+
u (τk+1, τk)

wk = x̄k(τk+1)−Akx̄k −B−k ūk −B+
k ūk+1

2. Convex Subproblem with Prescaling and Preconditioning
The final step in the construction of the convex subproblem involves scaling the decision variables and precondi-
tioning the constraint parameters. In particular, we treat x̂k and ûk as the decision variables, which are linearly
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related to xk and uk as follows:

xk = Pxx̂k + x̄k (19a)
uk = Puûk + ūk (19b)

where Px and Pu are selected to ensure that x̂k and ûk, for k = 1, . . . , N , are roughly on the same order of
magnitude, which greatly aids in convergence. Next, we define:

Â−k = P−1
x AkPx (20a)

Â+
k = −Inx

(20b)
B̂−k = P−1

x B−k Pu (20c)
B̂+

k = P−1
x B+

k Pu (20d)
ŵk = P−1

x (x̄k(τk+1)− x̄k+1) (20e)

Finally, the convex subproblem (17), which is a quadratic program (QP), can be stated as:

minimize
x̂k,ûk

wcostx̂
⊤
N ecost + wprox

2

N∑
k=1
∥x̂k∥2

2 + ∥ûk∥2
2 + wep

N−1∑
k=1

1⊤nx
(µ+

k + µ−k ) (21a)

subject to Â−k x̂k + Â+
k x̂k+1 + B̂−k ûk + B̂+

k ûk+1 + µ+
k − µ−k + ŵk = 0 1 ≤ k ≤ N − 1 (21b)

Ey(x̂k+1 − x̂k) ≤ ε̂k 1 ≤ k ≤ N − 1 (21c)
µ+

k ≥ 0, µ−k ≥ 0 1 ≤ k ≤ N − 1 (21d)
ûk,min ≤ ûk ≤ ûk,max 1 ≤ k ≤ N (21e)
Ẽix̂1 = ẑi, Ẽf x̂N = ẑf (21f)

where

ε̂k = ϵEyP−1
x E⊤y − EyP−1

x (x̄k+1 − x̄k)
ûk,min/max = P−1

u (umin/max − ūk)
ẑi = ẼiP

−1
x Ẽ⊤i ((zi, 0)− Ẽix̄1)

ẑf = ẼfP
−1
x Ẽ⊤f (zf − Ẽf x̄N )

III. Convex Optimization Solver
The convex subproblem (21) is a quadratic program (QP), which can be represented in the canonical form as:

minimize 1
2z⊤P̂ z + p̂⊤z (22a)

subject to Ĝz = ĝ (22b)
Ĥz ≤ ĥ (22c)
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where

z =
(
x̂1, . . . , x̂N , û1, . . . , ûN , µ−1 , . . . , µ−N−1, µ+

1 , . . . , µ+
N−1

)
∈ R(nx+nu)N+2nx(N−1) (23a)

P̂ = blkdiag(wtrI(nx+nu)N , 02nx(N−1)×2nx(N−1)) (23b)
p̂ = wcost

(
0nx(N−1), ex, 0nuN+2nx(N−1)

)
(23c)

+ wvc
(
0(nx+nu)N , 12nx(N−1)

)
(23d)

Ĝ =
[
Ĝx Ĝu Ĝµ

]
(23e)

Ĝx =
[
Â− 0nx(N−1)×nx

]
+

[
0nx(N−1)×nx

Â+
]

(23f)

Ĝu =
[
B̂− 0nx(N−1)×nu

]
+

[
0nx(N−1)×nu

B̂+
]

(23g)

Ĝµ =
[
Inx(N−1) − Inx(N−1)

]
(23h)

Â− = blkdiag(Â−1 , . . . , Â−N−1) (23i)
Â+ = blkdiag(Â+

1 , . . . , Â+
N−1) (23j)

B̂− = blkdiag(B̂−1 , . . . , B̂−N−1) (23k)
B̂+ = blkdiag(B̂+

1 , . . . , B̂+
N−1) (23l)

ĝ = −
(
ŵ1, . . . , ŵN−1

)
(23m)

Ĥy = −
[
IN−1 ⊗ Ey 0ny(N−1)×nx

]
+

[
0ny(N−1)×nx

IN−1 ⊗ Ey

]
(23n)

Ĥ =
[
Ĥy 0ny(N−1)×nuN+2nx(N−1)

]
(23o)

ĥ =
(
û1,max, . . . , ûN,max,−û1,min, . . . ,−ûN,min, 02nx(N−1), ε̂1, . . . , ε̂N−1

)
(23p)

We adopt the proportional-integral projected gradient (pipg) algorithm [23] with extrapolation (shown in Algorithm
1) to solve (22). The input to the algorithm consists of maximum iterations jmax, the extrapolation parameter
ρ, the step-size α, which depends on the singular values of P̂ and Ĥ, and the step-size ratio ω, which is chosen
heuristically to balance the convergence rates of the primal and dual iterates.

Algorithm 1 pipg

Inputs: jmax, ρ, α, ω

Initialize: ζ1, η1, χ1

1: β ← ωα
2: for j = 1, . . . , jmax do
3: zj+1 ← ζj − α(P̂ ζj + p̂ + Ĝ⊤ηj + Ĥ⊤χj)
4: Ẽix̂

j+1
1 ← ẑi

5: Ẽf x̂
j+1
K ← ẑf

6: ûj+1
k ← max{ûk,min, min{ûk,max, ûj+1

k }} k = 1, . . . , N
7: (µ+

k )j+1 ← max{0, (µ+
k )j+1} k = 1, . . . , N − 1

8: (µ−k )j+1 ← max{0, (µ−k )j+1} k = 1, . . . , N − 1
9: wj+1 ← ηj + β(Ĝ(2zj+1 − ζj)− ĝ)

10: vj+1 ← max{0, χj + β(Ĥ(2zj+1 − ζj)− ĥ)}
11: ζj+1 ← (1− ρ)ζj + ρzj+1

12: ηj+1 ← (1− ρ)ηj + ρwj+1

13: χj+1 ← (1− ρ)χj + ρvj+1

14: end for

Return: zj , wj , vj

Algorithm 1 can be customized to Algorithm 3 (referred to as pipgcustom), which exploits the sparsity structure of
the parameters (23) of (22). The recursive calls to pipgcustom within SCP are warm-started with the primal-dual
solution from the previous subproblem to accelerate its convergence.
The customized power iteration method shown in Algorithm 2, called before pipgcustom, estimates the square of
the maximum singular value of Ĥ, denoted by σ. The maximum eigenvalue of P̂ is trivially known, given its
construction as a diagonal matrix. Furthermore, pipgcustom employs a customized termination criterion, as shown
in Algorithm 4.
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The primary design consideration in Algorithms 2, 3, and 4 is to eliminate matrix factorizations, inversions, and
sparse linear algebra; only simple operations on small-sized dense vectors and matrices are used. See [23, 25, 26]
for further details on custom, real-time implementations of pipg.

Algorithm 2 Customized power iteration method

Inputs: Â−
[1:N−1], Â+

[1:N−1], B̂−
[1:N−1], B̂+

[1:N−1], x̂[1:N ], û[1:N ], µ+
[1:N−1], µ−

[1:N−1], ϵabs, ϵrel, ϵbuff , jmax

Require: x̂k, ûk, µ+
k , µ−

k are not all 0

1: σ ← 0
2: for k = 1, . . . , N − 1 do
3: σ ← σ +

∥∥x̂k

∥∥2
2

+
∥∥ûk

∥∥2
2

+
∥∥µ+

k

∥∥2
2

+
∥∥µ−

k

∥∥2
2

4: end for
5: σ ← σ +

∥∥x̂N

∥∥2
2

+
∥∥ûN

∥∥2
2

6: σ ←
√

σ

7: for j = 1, . . . , jmax do
8: for k = 1, . . . , N − 1 do
9: ϕk ← 1

σ

(
Â−

k x̂k + Â+
k x̂k+1 + B̂−

k ûk + B̂+
k ûk+1 + µ+

k − µ−
k

)
10: θk ← 1

σ
Ey (x̂k+1 − x̂k)

11: end for
12: x̂1 ← Â−⊤

1 ϕ1 − E⊤
y θ1

13: û1 ← B̂−⊤

1 ϕ1
14: µ+

1 ← ϕ1
15: µ−

1 ← −ϕ1

16: for k = 2, . . . , N − 1 do
17: x̂k ← Â−⊤

k ϕk + Â+⊤

k−1ϕk−1 − E⊤
y vk + E⊤

y vk−1

18: ûk ← B̂−⊤

k ϕk + B̂+⊤

k−1ϕk−1

19: µ+
k ← ϕk

20: µ−
k ← −ϕk

21: end for
22: x̂N ← Â+⊤

N−1ϕN−1 + E⊤
y vN−1

23: ûN ← B̂+⊤

N−1ϕN−1

24: σ⋆ ← 0
25: for k = 1, . . . , N − 1 do
26: σ⋆ ← σ⋆ +

∥∥x̂k

∥∥2
2

+
∥∥ûk

∥∥2
2

+
∥∥µ+

k

∥∥2
2

+
∥∥µ−

k

∥∥2
2

27: end for
28: σ⋆ ← σ +

∥∥x̂N

∥∥2
2

+
∥∥ûN

∥∥2
2

29: σ⋆ ←
√

σ⋆

30: if |σ⋆ − σ| ≤ ϵabs + ϵrel max{σ⋆, σ} then ▷ stopping criterion
31: break
32: else if j < jmax then
33: σ ← σ⋆

34: end if
35: end for
36: σ ← (1 + ϵbuff) σ⋆ ▷ buffer the estimated maximum singular value

Return: σ
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Algorithm 3 pipgcustom

Inputs: wcost, ecost, wep, wprox
Â−

[1:N−1], Â+
[1:N−1], B̂−

[1:N−1], B̂+
[1:N−1], ŵ[1:N−1]

û[1:N ],min, û[1:N ],max, Ey , ε̂[1:N−1], Ẽi, Ẽf , ẑi, ẑf
σ, ω, ρ, ϵabs, ϵrel, jcheck, jmax,
x̂⋆

[1:N ], û⋆
[1:N ], µ+,⋆

[1:N−1], µ−,⋆
[1:N−1], ϕ⋆

[1:N−1], θ⋆
[1:N−1] ▷ warm start

1: x̃1
[1:N ] ← x̂⋆

[1:N ] ▷ initialize primal variables
2: ũ1

[1:N ] ← û⋆
[1:N ]

3: ν+,1
[1:N−1] ← µ+,⋆

[1:N−1]
4: ν−,1

[1:N−1] ← µ−,⋆
[1:N−1]

5: φ1
[1:N−1] ← ϕ⋆

[1:N−1] ▷ initialize dual variables
6: ϑ1

[1:N−1] ← θ⋆
[1:N−1]

7: α← 2
wprox+

√
w2

prox+4ωσ
▷ step-sizes

8: β ← ωα

9: for j = 1, . . . , jmax do
10: x̂j

1 ← x̃j
1 − α (wprox x̃j

1 + Â−⊤
1 φj

1 − E⊤
y ϑj

1)
11: Ẽix̂

j
1 ← ẑi

12: ûj
1 ← max{û1,min, min{û1,max, ũj

1 − α (wprox ũj
1 + B̂−⊤

1 φj
1)}}

13: for k = 2, . . . , N − 1 do ▷ projected gradient step
14: x̂j+1

k
← x̃j

k
− α (wprox x̃j

k
+ Â−⊤

k
φj

k
+ Â+⊤

k−1φj
k−1 − E⊤

y ϑj
k

+ E⊤
y ϑj

k−1)
15: ûj+1

k
← max{ûk,min, min{ûk,max, ũj

k
− α (wprox ũj

k
+ B̂−⊤

k
φj

k
+ B̂+⊤

k−1ϑj
k−1)}}

16: end for
17: x̂j+1

N ← x̃j
N − α (wprox x̃j

N + wcostecost + Â+⊤
N−1φj

N−1 + E⊤
y ϑj

N−1)
18: Ẽf x̂

j+1
N ← ẑf

19: ûj+1
N ← max{ûN,min, min{ûN,max, ũj

N − α (wprox ũj
N + B̂+⊤

N−1φj
N−1)}}

20: µ±,j
[1:N−1] ← max{0, ν±,j

[1:N−1] − α (wep1nx + φj
[1:N−1])}

21: for k = 1, . . . , N − 1 do ▷ PI feedback of affine equality constraint violation
22: ϕj+1

k
← φj

k
+ β (Â−

k
(2x̂j+1

k
− x̃j

k
) + Â+

k
(2x̂j+1

k+1 − x̃j
k+1) + B̂−

k
(2ûj+1

k
− ũj

k
) + B̂+

k
(2ûj+1

k+1 − ũj
k+1)

23: + (2 µ+,j+1
k

− ν+,j
k

)− (2 µ−,j+1
k

− ν−,j
k

) + ŵk)

24: θj+1
k
← max{0, ϑj

k
+ β ((2Eyx̂j+1

k+1 − Eyx̃j
k+1)− (2Eyx̂j+1

k
− Eyx̃j

k
)− ε̂k)}

25: end for
26: x̃j+1

[1:N ] ← (1− ρ) x̃j
[1:N ] + ρ x̂j+1

[1:N ] ▷ extrapolate primal variables
27: ũj+1

[1:N ] ← (1− ρ) ũj
[1:N ] + ρ ûj+1

[1:N ]

28: ν±,j+1
[1:N−1] ← (1− ρ) ν±,j

[1:N−1] + ρ µ±,j+1
[1:N−1]

29: φj+1
[1:N−1] ← (1− ρ) φj

[1:N−1] + ρ ϕj+1
[1:N−1] ▷ extrapolate dual variables

30: ϑj+1
[1:N−1] ← (1− ρ) ϑj

[1:N−1] + ρ θj+1
[1:N−1]

31: if j mod jcheck = 0 then ▷ check stopping criterion every jcheck iterations
32: terminate← stoppingcustom(x̂j+1

[1:N ], ûj+1
[1:N ], µ±,j+1

[1:N−1], ϕj+1
[1:N−1], θj+1

[1:N−1]

33: x̂j
[1:N ], ûj

[1:N ], µ±,j
[1:N−1], ϕj

[1:N−1], θj
[1:N−1], ϵabs, ϵrel)

34: if terminate = true then ▷ stopping criterion
35: break
36: end if
37: end if
38: end for
39: x̂⋆

[1:N ] ← x̂j+1
[1:N ] ▷ update primal variables

40: û⋆
[1:N ] ← ûj+1

[1:N ]

41: µ±,⋆
[1:N−1] ← µ±,j+1

[1:N−1]

42: ϕ⋆
[1:N−1] ← ϕj+1

[1:N−1] ▷ update dual variables
43: θ⋆

[1:N−1] ← θj+1
[1:N−1]

Return: x̂⋆
[1:N ], û⋆

[1:N ], µ±,⋆
[1:N−1], ϕ⋆

[1:N−1], θ⋆
[1:N−1]
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Algorithm 4 Customized stopping criterion evaluation:
stoppingcustom(x̂j+1

[1:N ], ûj+1
[1:N ], µ+,j+1

[1:N−1], µ−,j+1
[1:N−1], ϕj+1

[1:N−1], θj+1
[1:N−1]

x̂j
[1:N ], ûj

[1:N ], µ+,j
[1:N−1], µ−,j

[1:N−1], ϕj
[1:N−1], θj

[1:N−1], ϵabs, ϵrel)

Inputs: x̂j+1
[1:N ], ûj+1

[1:N ], µ+,j+1
[1:N−1], µ−,j+1

[1:N−1], ϕj+1
[1:N−1], θj+1

[1:N−1]

x̂j
[1:N ], ûj

[1:N ], µ+,j
[1:N−1], µ−,j

[1:N−1], ϕj
[1:N−1], θj

[1:N−1], ϵabs, ϵrel

1: zj+1
∞ ← max

{
∥x̂j+1

[1:N ]∥∞, ∥ûj+1
[1:N ]∥∞, ∥µ+,j+1

[1:N−1]∥∞, ∥µ−,j+1
[1:N−1]∥∞

}
2: zj

∞ ← max
{
∥x̂j

[1:N ]∥∞, ∥ûj
[1:N ]∥∞, ∥µ+,j

[1:N−1]∥∞, ∥µ−,j
[1:N−1]∥∞

}
3: z∆j

∞ ← max
{
∥x̂j+1

[1:N ] − x̂j
[1:N ]∥∞, ∥ûj+1

[1:N ] − ûj
[1:N ]∥∞, ∥µ+,j+1

[1:N−1] − µ+,j
[1:N−1]∥∞, ∥µ−,j+1

[1:N−1] − µ−,j
[1:N−1]∥∞

}
4: rj+1

∞ ← max
{
∥ϕj+1

[1:N−1]∥∞, ∥θj+1
[1:N−1]∥∞

}
5: rj

∞ ← max
{
∥ϕj

[1:N−1]∥∞, ∥θj
[1:N−1]∥∞

}
6: r∆j

∞ ← max
{
∥ϕj+1

[1:N−1] − ϕj
[1:N−1]∥∞, ∥θj+1

[1:N−1] − θj
[1:N−1]∥∞

}
7: if z∆j

∞ ≤ ϵabs + ϵrel max
{

zj+1
∞ , zj

∞
}

and r∆j
∞ ≤ ϵabs + ϵrel max

{
rj+1

∞ , rj
∞

}
then

8: terminate← true
9: else

10: terminate← false
11: end if

Return: terminate

IV. 6-DoF Powered Descent Guidance
The 6-DoF rocket model is based on [28], with the inclusion of an independent torque control input by means of
reaction control thrusters (as shown in [26]), and with the aerodynamics forces and moments ignored.
The system dynamics (1) and constraint function (2) are given by:

ξ = (m, rI , vI , qI←B, ωB) (24a)
ζ = (TB, γB) (24b)

F (ξ, ζ) =


−αṁ∥TB∥2

vI
1
m CI←BTB + gI

1
2 Ω(ωB)qI←B

J−1
B (rT,B × TB − ωB × JBωB + γB)

 (24c)

g(ξ, ζ) =



mdry −m

−e⊤1 rI

∥vI∥2
2 − v2

max
4∥HθqI←B∥2

2 + (1− cos θmax)2

∥ωB∥2
2 − ω2

max
∥TB∥2 − e⊤1 TB sec δmax

∥TB∥2 − Tmax

−∥TB∥2 + Tmin

∥γB∥2
2 − γ2

max


(24d)

The numerical values for the parameters within the system dynamics (αṁ, gI , JB, rT,B, Hθ), boundary conditions
(zi, zf), and constraint bounds (mdry, γgs, vmax, θmax, Tmax, Tmin) correspond to the baseline problem in [11]. Note
that the non-differentiability of the constraint functions for thrust magnitude bounds at TB = 03 does not
affect the linearization operations within SCP in practice with an appropriate initial guess for the thrust vector.
Furthermore, the box constraint on the scaled control input in Lines 12, 15 and 19 of Algorithm 3 are only
imposed on the dilation factor.
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V. GPU Architecture and Code Implementation

A. Overview
Loosely speaking, CPUs are designed to execute code serially. Consider the problem of adding two vectors. A CPU
is designed to add these two vectors by looping through the elements of each vector and adding the corresponding
elements. In contrast, GPUs have many specialized hardware units that allow them to perform many floating
point operations in parallel. A GPU would add two vectors together by adding the corresponding elements in
parallel by assigning each scalar addition to a different compute thread.
In GPU programming, a single sequence of instructions is called a thread. Back to the example of adding two
vectors on a GPU, a single thread would execute a single scalar addition. Threads in turn are organized into a
grid of thread-blocks. In the vector addition example, we would want to have the same number of threads as the
number of elements in each vector. To write programs for the GPU, NVIDIA provides the compute unified device
architecture (cuda) platform, which is an extension of the C programming language [33].
cuda enables the programmer to write special GPU functions called kernels, which, when called, are executed a
specified number of times in parallel. When the programmer writes a kernel, they are specifying how a single
thread should execute the given code; when calling a kernel, the programmer specifies the number of threads per
thread-block and the number of thread-blocks in the grid. The product of these two numbers is the number of
threads being called. Each thread of execution has a unique identifier based on its thread-block index within the
grid and its thread index within the thread-block. The thread ID in a kernel is an integer in [0, N), where N is
the number of threads called. However, before performing computations on the GPU, we must first ensure that
the data the kernel is operating on is in GPU memory rather than in CPU memory. This typically requires the
programmer to allocate memory on the GPU to store this data, using the cudaMalloc() function, and to then
copy the data from the CPU to the GPU using the cudaMemcpy() function.
When the kernel is called, the thread-blocks are then distributed to streaming multiprocessors (SM), which contain
a collection of cuda cores. These cuda cores execute the threads within a thread-block. When a SM finishes
executing all threads on a thread-block, the GPU allocates it another thread-block.
In all of this, the programmer only has to worry about creating a grid of thread-blocks when they call the kernel.
The GPU is responsible for allocating thread-blocks to SMs, which are in turn are responsible for allocating
threads to cuda cores. The thread hierarchy is summarized by Figure 1.
As an example, consider the code in Listing 1. The first function is how one would write a function to add two
vectors on a CPU. The second function is how one would write a cuda kernel to add two vectors in parallel.
When launching this kernel, each GPU thread executes the code within the kernel in parallel. The first line in this
kernel computes the unique thread ID for the thread; subsequently this thread will perform one scalar addition
for the index that matches its thread ID. The main() function shows how to call the serial version of this vector
addition and how to call the cuda kernel. We must first allocate the memory for arrays a, b, and c on the GPU
and then copy the data in the arrays from the CPU to the GPU. Finally, the kernel can be called with the desired
grid size and thread-block size.

Thread
executed by +

cuda Core

· · ·

Thread-Block
executed by + +

Streaming Multiprocessor

· · · +

· · · · · · · · ·

Grid

executed by

+ +

GPU

· · · ++ +

GPU

· · · ++ +

GPU

· · · +

Fig. 1 Thread hierarchy in the GPU
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1 /* Performs the vector addition c = a + b serially , where all vectors have N elements . */
2 void add_vector_serial (int* a, int* b, int* c, int N)
3 {
4 for(int i = 0; i < N; i++)
5 {
6 c[i] = a[i] + b[i];
7 }
8 }
9

10 /* CUDA kernel to perform c = a + b, where all vectors have N elements . */
11 __global__ void add_vector_parallel (int* a, int* b, int* c, int N)
12 {
13 /* Get the ID of the thread executing this function . */
14 int thread_id = blockIdx .x* blockDim .x + threadIdx .x;
15

16 /* Safeguard if the kernel is launched with more threads than the number of elements . */
17 if (i < N)
18 {
19 c[i] = a[i] + b[i];
20 }
21 }
22

23 int main ()
24 {
25 /* Declare pointers for arrays in CPU memory . */
26 int* a[N];
27 int* b[N];
28 int* c[N];
29

30 /* Helper function to fill a and b with data. */
31 initialize (a, b);
32

33 /* Declare pointers for arrays in GPU memory . */
34 int* d_a , d_b , d_c;
35

36 /* Allocate memory for arrays in GPU memory . */
37 cudaMalloc (( void **) &d_a , N * sizeof (int));
38 cudaMalloc (( void **) &d_b , N * sizeof (int)));
39 cudaMalloc (( void **) &d_c , N * sizeof (int)));
40

41 /* Copy data in array from CPU to GPU memory . */
42 cudaMemcpy (d_a , a, N * sizeof (int), cudaMemcpyHostToDevice );
43 cudaMemcpy (d_b , b, N * sizeof (int), cudaMemcpyHostToDevice );
44 cudaMemcpy (d_c , c, N * sizeof (int), cudaMemcpyHostToDevice );
45

46 /* Call serial addition function on CPU. */
47 add_vector_serial (a, b, c, N);
48

49 /* Call parallel addition kernel on GPU. */
50 add_vector_parallel <<<grid_size , block_size >>>(d_a , d_b , d_c , N);
51 }

Listing 1 Code for serial (CPU) and parallelized (GPU) vector addition

B. Code Structure
The data transfer bandwidth between the CPU and the GPU is much slower than that between the cuda cores
and the GPU memory. Thus to achieve peak performance, it is important to minimize data transfer between
the CPU and GPU [33]. Consequently, we chose the following execution model: create an array of problem
instances with varying initial conditions on the CPU, allocate the necessary memory on the GPU to store these
problem instances, copy the problem instance data to the GPU, launch a kernel that solves all of these trajectory
optimization problem instances on the GPU, and finally copy back the trajectories from the GPU to the CPU. In
this paradigm, we are assigning each thread one trajectory to compute. Each thread is able to access the problem
instance it needs to solve by indexing into the array of problem data using its unique thread ID. Figure 2 shows
the flow of data in our implementation.
By taking this approach we only have to incur the costly overhead of CPU-GPU communication once when
sending the problem instances to the GPU and once when copying the computed trajectories back from the GPU.
As mentioned in Section I, a key difficulty with implementing this procedure on the GPU is the need to implement
all operations from scratch in cuda, since we are unable to use off-the-shelf linear algebra routines and convex
optimization solvers. Therefore, all code necessary to solve for a trajectory was implemented in cuda, including
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Initial Conditions

CPU Memory GPU Memory

GPU Thread

GPU Thread

GPU Thread

...
CPU Memory Output File

Fig. 2 Data flow between the CPU and the GPU

Level 1, 2, and 3 BLAS operations and the pipgcustom algorithm.

VI. Numerical Results
This section presents and analyzes Monte Carlo results for the 6-DoF powered-descent guidance problem outlined
in Section IV using the solution procedure in Section II. We then compare the computation time between a serial
CPU implementation and parallel GPU implementation for Monte Carlo simulations of various sizes. All results
were obtained on a machine with an AMD Ryzen 9 7950X3D CPU and an NVIDIA RTX 3090 GPU.
When conducting the Monte Carlo, we disperse the initial position according to the following uniform distribution:

rI(0) ∼

U(6, 9)
U(3, 6)
U(1, 2)

 (25)

For all simulations, we use the same weights, wcost, wtr, and wvc, defined in Equation 21a, we set the maximum
number of SCP iterations to 25, and we use 2500 pipg iterations with the same hyperparameters ω and ρ for each
subproblem solve. We find that SCP converges within 25 iterations for all 256 of these trajectories, which is the
first demonstration of robustness to variations in initial conditions for SCP with pipg as a subproblem solver.
Figures 3 and 4 show the trajectories obtained. An extensive Monte Carlo analysis of the 6-DoF PDG problem is
provided in [1].
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Fig. 3 Trajectories generated from 256 Monte Carlo runs

Figure 5 depicts timing results for serial CPU and parallel GPU Monte Carlos for varying Monte Carlo batch
sizes and for various thread-block sizes. For the GPU simulations, only the solve-time is reported since execution
times for malloc and memcpy were an order of magnitude smaller than the solve-time.
As mentioned in Section V, calling a kernel requires two parameters: thread-block size and grid size, which is
the number of thread-blocks in the grid. The product of these two parameters dictates the number of threads
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Fig. 5 CPU and GPU Monte Carlo solve-times. GPU results are plotted for the indicated
thread-block sizes.

launched. This gives users a choice in choosing the thread-block and grid size when launching a kernel. For
example, if we wanted to perform a Monte Carlo with a batch size of 512, we could choose a thread-block size
of 128 and grid size of four or a thread-block size of 256 and grid size of two. Here, we perform Monte Carlo
runs on the GPU with maximum thread-block sizes of 64, 128, and 256. For batch sizes below the maximum
thread-block size, we set the thread-block size to be the batch size, and the grid size to one. For example, if we
had a maximum thread-block size of 64 and were conducting a Monte Carlo run with a batch size of four, we
would set the thread-block size to 4 and grid size to one. On the other hand, if we were conducting a Monte
Carlo run with a batch size of 128, we would set the thread-block size to 64 and the grid size to two.
From Figure 5, it is evident that the Monte Carlo run on the GPU is slower than that on the CPU for small
batch sizes, and faster for larger batch sizes, with a crossover point roughly between 1024 and 2048 Monte Carlo
runs. Since CPUs, unlike GPUs, are optimized for serial tasks such as SCP, it is unsurprising that for smaller
runs, the CPU is faster. However, as the batch size increases, the GPU is able to leverage parallelism to provide
acceleration. In other words, although the GPU takes longer than the CPU to solve a single SCP problem, it is
able to accelerate the Monte Carlo run when given a large number of problems to solve.
The log-log timing plot for the CPU implementation, shown in Figure 5a, is linear with a constant slope, as
expected, since doubling the number of runs will double the solve-time for a serial implementation. However, the
timing plots for the GPU exhibit three phases as the batch size increases. Initially, the solve-time increases until
the maximum block size is reached, then the solve-time stays relatively constant, and finally, it increases again.
In the first phase, since all threads are in a single thread-block, all the computations for the Monte Carlo are
being performed by a single streaming multiprocessor. After the number of runs exceeds the maximum size of the
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thread-block, a second thread-block is populated, which allows a second streaming multiprocessor to compute
these trajectories in parallel with the first thread-block. This results in the second phase, wherein the solve-time
curve is flat. The number of runs after which the curve flattens out is dictated by the maximum thread-block
size. The third phase, where increasing the number of runs increases the solve-time again, is likely due to the
GPU not being able to allocate any more streaming multiprocessors to the thread-blocks, forcing them to execute
thread-blocks serially.

VII. Conclusion
We introduce a GPU-accelerated Monte Carlo framework for general nonconvex trajectory optimization problems
using sequential convex programming. By comparing a parallel GPU-based implementation of a Monte Carlo
framework for the 6-DoF powered-descent guidance problem to a serial CPU-based implementation, we show
that for simulations over ∼1000 runs, the GPU-based implementation is faster. Future work will investigate
parallelized multi-start for nonconvex trajectory optimization, wherein a number of initial guesses are provided,
the resulting problems are solved in parallel, and the converged trajectory with the lowest cost is chosen.
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