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Abstract: We introduce a multi-phase rocket landing guidance framework that can handle
nonlinear dynamics and does not mandate any additional mixed-integer or nonconvex constraints
to handle discrete temporal events/switching. To achieve this, we first introduce sequential conic
optimization (seco), a new paradigm for solving nonconvex optimal control problems that is
entirely devoid of matrix factorizations and inversions. This framework combines sequential
convex programming (SCP) and first-order conic optimization and can solve unified multi-phase
trajectory optimization problems in real-time. The novel features of this framework are: (1) time-
interval dilation, which enables multi-phase trajectory optimization with free-transition-time; (2)
single-crossing compound state-triggered constraints, which are entirely convex if the trigger and
constraint conditions are convex; (3) virtual state, which is a new approach to handling artificial
infeasibility in SCP methods that preserves the shapes of the constraint sets; and, (4) the use
of the proportional-integral projected gradient method (pipg), a high-performance first-order
conic optimization solver, in tandem with the penalized trust region (ptr) SCP algorithm. We
demonstrate the efficacy and real-time capability of seco by solving a relevant multi-phase rocket
landing guidance problem with nonlinear dynamics and convex constraints only, and observe
that our solver is 2.7 times faster than a state-of-the-art convex optimization solver.
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1. INTRODUCTION

Rocket landing guidance can be considered to be the gener-
alization of powered-descent guidance (PDG) to include the
unpowered phase(s) of flight. Precision landing techniques
for orbital rockets harness convex optimization for real-
time trajectory generation (Açıkmeşe and Ploen, 2007;
Blackmore, 2016). One such method, known as lossless
convexification, was the first convex optimization-based
algorithm to compute a rocket landing guidance trajec-
tory for a mid-flight large divert maneuver onboard the
vehicle. Sequential convex programming (SCP) techniques
for rocket landing have recently emerged as a way to
handle more generalized nonconvexities in the dynamics,
state constraints, environmental constraints, and path
constraints (Mao et al. (2016)). Such SCP algorithms
have been demonstrated to successfully solve a wide range
of 6-DoF rocket landing problems (Szmuk et al. (2019);
Reynolds et al. (2020b); Szmuk et al. (2020)).

Pseudospectral methods have been developed in the last
decade for solving multi-phase trajectory optimization
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problems, particularly in aerospace applications. These
methods typically parameterize the state time-history
with Chebyshev and Legendre polynomials, operate on
nonuniform time-grids with node points that are roots
of these polynomials, and use linking conditions to tie
together different phases of flight. A multi-phase Radau
pseudospectral method was introduced in (Garrido and
Sagliano, 2021) for ascent and powered-descent guidance.
The SPARTAN software package described in (Sagliano
et al., 2021) has been demonstrated to solve multi-phase
problems arising in space applications. Further, relevant
details showcasing pseudospectral approaches are provided
in (Hwang and Ahn, 2022; Ma et al., 2019; Zhang and
Zhang, 2022). Despite their ability to solve multi-phase
problems, pseudospectral methods are typically untenable
for real-time implementations (Malyuta et al., 2019).

In this paper, we present sequential conic optimization
(seco), a novel matrix-inverse-free paradigm for solving
nonconvex optimal control problems in real-time, using
which we formulate and solve a multi-phase rocket landing
guidance problem in a unified manner. The guidance
algorithm has the ability to perform mid-burn engine
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switching after ignition. The primary features of the
seco framework are as follows: (1) time-interval dilation,
which allows for nonuniform time-grids and free-phase-
transition-time; (2) a new formulation of compound state-
triggered constraints—called single-crossing compound
state-triggered constraints—that is convex, provided the
trigger and constraint conditions are convex; (3) a new
approach to handling artificial infeasibility, i.e., virtual state,
that preserves the shapes of the constraint sets and does not
alter the dynamics manifold; and (4) pipg (proportional-
integral projected gradient), a high-performance first-order
solver that effectively exploits the structure of trajectory
optimization problems, making it well-suited for embedded
applications (Yu et al. (2020)). Further, we use an inverse-
free exact discretization method to generate dynamically
feasible solutions. Despite the layers of apparent complexity
described, the method that we present is implemented via a
low-footprint codebase that is easy to verify and validate.

2. DYNAMICS

2.1 Time-interval dilation

The original nonlinear dynamics, governing the evolution
of state x(t) ∈ Rnx with control input u(t) ∈ Rnu , over the
entire time-horizon, are given by Equation (1).

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, tf ) (1)

Now, we consider the dynamics in the sub-interval [tk, tk+1),
where 0 < tk < tk+1 < tN = t−f , k = 1 : N−1—where

a :b denotes the range of integers between (and including)
integers a and b—and define an affine map, τk(t), as shown
in Equation (2).

τk(t) :=
t− tk

t−k+1 − tk
∋ τk(t) : [tk, tk+1) → [0, 1) (2)

This mapping is referred to as time-interval dilation, as
it normalizes the wall-clock time-interval to a known
fixed interval—in our case [0, 1)—by either shrinking or
expanding—and hence dilating—the original time-interval.
Next, we apply the derivative operator with respect to

the dilated time τk, denoted by
◦
□, to Equation (1), and

invoke the chain-rule, as shown in Equation (3), where
t ∈ [tk, tk+1).

◦
x(t) =

d

dτk
x(t) =

dt

dτk

d

dt
x(t) =

dt

dτk
ẋ(t) =

(
t−k+1− tk

)
sk

ẋ(t)

= sk f(t, x(t), u(t)) := F (t, x(t), u(t), sk) (3)

The multiplier in Equation (3), sk := t−k+1−tk ∈ R+, which

is nothing but the length of the kth wall-clock time-interval,
is termed the dilation factor. By treating a phase-based
subset of sk, k = 1:N−1, i.e., such that k ⊆ 1 :N−1, as
decision variables and discretizing the system over them, we
allow the optimizer to decide what the temporal spacing
of discrete nodes should be in each phase rather than
use a uniform temporal grid over the entire horizon. In
the approach we propose, this is the key to enabling free-
transition-time multi-phase trajectory optimization within
a single-shot optimization framework, without requiring
any mixed-integer or nonconvex constraints to handle the
discrete temporal events/switching.

Although it is possible to allow each dilation factor to be an
independent decision variable, we choose to partition the

temporal grid based on the phases of flight, and evenly space
the temporal nodes within each phase. This measure is
taken to mitigate extreme inter-sample constraint violation,
which tends to occur when fully adaptive grids are used.
The time-dilated dynamics given by Equation (3) will be
used henceforth. Note that using the time-dilated dynamics
given by Equation (3) in lieu of Equation (1) converts
the original free-final-time optimal control problem to an
equivalent fixed-final-time optimal control problem, with
the effective horizon being [0, N−1).

2.2 Linearization

A convex approximation of the original nonconvex optimal
control problem is obtained by linearizing the nonlinear
dynamics (Equation (3))—which leads to a linear time-
varying (LTV) system—and keeping the convex constraints
intact. The state, control, and parameter constraint sets are
assumed to belong to a set that has separable closed-form
projection operations. We stress that most of the common
constraints in trajectory optimization problems naturally fit
this template (Malyuta et al., 2022). Nonconvex constraints
can be handled using this framework too, by means of either
linearization or convex approximation.

2.3 Discretization

We assume a first-order hold (FOH) on the control
input signal throughout the horizon and a zero-order
hold (ZOH) on the control input signal only during
discrete switching events such as engine startup and
downselection. Both of these control parameterizations have
two key properties that make them attractive for optimal
control applications: (1) inter-sample satisfaction of the
convex control constraints is guaranteed (provided they
are satisfied at the discrete temporal nodes), which is in
contrast to pseudospectral methods; and, (2) the resulting
conic subproblem has a sparsity pattern that is amenable
to real-time implementation (Malyuta et al., 2019; Szmuk
et al., 2020).

In the FOH case, the control profile is parameterized as
shown in Equation (4), where t ∈ [tk, tk+1) and τk ∈ [0, 1),
as given by Equation (2).

u(τk) = (1− τk)uk + τk uk+1, k = 1:N−1 (4)

The LTV dynamics can now be written: (1) using the
piecewise-affine control input parameterization given by
Equation (4); and, (2) in terms of deviations from the
reference, as shown in Equation (5). The reference quan-
tities are denoted by □, and ∆□ denotes the deviation
of a quantity from its reference, i.e., ∆□ := □ − □, and
∆

◦
x(τk) :=

◦
x(τk)−F (τk, x(τk), u(τk), sk). The approximate

nature of the equation is an artifact of linearization of the
original nonlinear dynamics via truncation of the higher-
order (≥ 2) terms in the Taylor series expansion.

∆
◦
x(τk) ≈ A(τk)∆x(τk) +B(τk) (1− τk)∆uk

+B(τk) τk ∆uk+1 + S(τk)∆sk
(5)

The state transition matrix (STM) associated with Equa-
tion (5), denoted by Φ(τk, 0), τk ∈ [0, 1), satisfies the follow-

ing matrix differential equation:
◦
Φ(τk, 0) = A(τk) Φ(τk, 0),

with Φ(0, 0) = Inx . The unique solution to Equation (5) is
given by Equation (6) (Antsaklis and Michel, 2006; Malyuta
et al., 2022).



∆x(τk) = Φ(τk, 0)∆x(0) +

∫ τk

0

Φ(τk, ζ) · (6)

· {B(ζ) (1− τk)∆uk +B(ζ) τk ∆uk+1 + S(ζ)∆sk}dζ

Fig. 1. Propagation of the state. ∆x(t1) := 0, where t1 := 0.
The stitching condition for k = 1 :N−1 is given by
∆x

(
t−k+1

)
+ x

(
t−k+1

)
= ∆x(tk+1) + x(tk+1) = x(tk+1).

Evaluating Equation (6) at τk = 1−, we get Equation (7).
We replace the limits 0 and 1 with 0k and 1k, respectively,
to explicitly indicate the dependence on index k, i.e.,
τk(tk) := 0k and τk

(
t−k+1

)
:= 1−k .

∆x
(
1−k

)
= Ak∆x(0k) +B−k ∆uk +B+

k ∆uk+1 + Sk∆sk (7)

Ak, B
−
k , B+

k , and Sk can be computed as the solution to
the initial value problem (IVP) given by Equations (8),
respectively, integrated from 0k to 1−k .

◦
ΨA(ζ) = A(ζ)ΨA(ζ) (8a)

◦
ΨB−(ζ) = A(ζ)ΨB−(ζ) +B(ζ) (1− ζ) (8b)
◦
ΨB+(ζ) = A(ζ)ΨB+(ζ) +B(ζ) ζ (8c)

◦
ΨS(ζ) = A(ζ)ΨS(ζ) + S(ζ) (8d)

where function ΨA(ζ) is defined such that ζ 7→ Φ(ζ, 0k),
and the initial conditions for Equations (8) are: ΨA(0k) =
Inx , ΨB−(0k) = ΨB+(0k) = 0nx×nu , and ΨS(0k) = 0nx .
Note that Equation (9), which we refer to as the stitching
condition, holds, as is evident from Figure 1.

∆x
(
1−k

)
+ x

(
1−k

)
= ∆x(1k) + x(1k) (9)

The discretized dynamics can now be given by Equation
(10), where ∆xk := ∆x(0k), x

prop
k+1 := x

(
1−k

)
, xk+1 := x(1k),

and u(τk) := (1− τk)uk + τk uk+1, for 1 ≤ k ≤ N−1.

∆xk+1 = Ak∆xk +B−k ∆uk +B+
k ∆uk+1 + Sk∆sk

+ xprop
k+1 − xk+1

(10)

The discretized dynamics in terms of the absolute variables
are recovered from Equation (10), as shown in Equation
(11).

xk+1 = Ak xk +B−k uk +B+
k uk+1 + Sk sk + (11)

xprop
k+1 −

(
Ak xk +B−k uk +B+

k uk+1 + Sk sk
)

Equation (11) represents an exact discretization of the
LTV dynamics, which means that the error between the
continuous-time trajectory and the discrete-time trajectory
at the discrete temporal nodes is analytically zero.

In order to obtain the corresponding expressions for
the ZOH case, the following changes are incorporated:
(1) Equation (8b) is replaced by Equation (12) (and
accordingly, B−k is replaced by Bk); and, (2) B+

k is set
to a zero matrix with the same dimensions.

◦
ΨB(ζ) = A(ζ)ΨB(ζ) +B(ζ) (12)

3. STATE-TRIGGERED CONSTRAINTS

We introduce a specialized formulation of compound state-
triggered constraints (STCs) for problems in which the
trigger functions are activated only once and are strictly
monotonic in a neighborhood around which they are
activated. We refer to these constraints as single-crossing
compound state-triggered constraints.

Let g(·) be a trigger function that is said to be activated on
the set {x | g(x) ≤ g⋆} for some trigger value g⋆. Further,
let g−1(g⋆) be a well-defined pre-image. Then, g(·) is called
a single-crossing trigger function if x⋆ := g−1(g⋆) is a
singleton and g(·) is strictly monotonic in a neighborhood
around x⋆. Such a formulation is especially useful in
applications such as rocket landing that require certain
STCs to be satisfied for mission success, wherein it is
reasonable to expect the trigger conditions to be activated
once and only once. For instance, it is reasonable to
expect/require a rocket in descent from a certain initial
altitude, hi, with its target landing location at the origin,
to certainly cross a trigger altitude 0 < htrigger < hi once
during its descent, and not surpass that altitude after.

For the purpose of demonstration, we consider a compound
STC with one trigger condition and multiple constraint
conditions to be imposed with the and logic. Let g(·) be
the trigger function and cj(·), j = 1:nc, be the constraint
functions, where nc is the number of constraint conditions.
The purpose of the compound STC (Szmuk et al., 2019,
Section II.B) is to satisfy the condition given in Equation
(13), where x(t) is the state. ∀t ∈ [0, tf ),

g(x(t)) ≤ 0 ⇒
nc∧
j=1

cj(x(t)) ≤ 0 (13)

In maneuvers with a single-crossing trigger condition,
the trigger condition is activated once and only once,
i.e., g(x(t)) = 0 is guaranteed to activate at some t =
ttrigger, g(x(t)) > 0 ∀t ∈ [0, ttrigger), and g(x(t)) < 0
∀t ∈ (ttrigger, tf ). Using this fact, the single-crossing
compound STC is formulated as shown in Equation (14).
We emphasize that ttrigger itself is free, and hence the
compound constraint is state-triggered and not time-
triggered.

g(x(t)) ≥ 0 ∀t ∈ [0, ttrigger) (14a)

g(x(t)) = 0, t = ttrigger (14b)

g(x(t)) ≤ 0

c1(x(t)) ≤ 0
...

cnc(x(t)) ≤ 0

 ∀t ∈ (ttrigger, tf ) (14c)

If the trigger conditions and the constraint conditions above
are individually convex, the compound STC is entirely
convex. This is in contrast to existing formulations of STCs
in the literature that are inherently nonconvex, regardless
of the convexity of the trigger and constraint conditions
(Szmuk et al., 2019, 2020; Reynolds et al., 2020b). However,
those methods are more general, in that they do not
mandate the trigger condition to be single-crossing—we
trade off this generality for convexity/simplicity in our
method. Further, we note that the single-crossing STC
formulation bears resemblance to the method adopted in
(Bhasin, 2016).



The aforementioned approaches in the literature use
uniform temporal spacing of discrete nodes over the entire
horizon. As a result, along with the fact that inter-sample
constraint satisfaction is typically not guaranteed in general,
these approaches do not guarantee the imposition of the
constraints exactly at the specified trigger conditions. The
triggering of these constraints (in time) is only accurate up
to the spacing of the grid, and the corresponding solutions
usually demonstrate violation of these constraints with
respect to the triggers. This issue becomes more prevalent
in maneuvers over very long time horizons, especially when
the set of feasible trigger windows is much smaller in
comparison, and can be detrimental to mission success
if accurate triggering is required.

We leverage time-interval dilation to impose single-crossing
STCs, and treat the windows within which these constraints
need to be imposed as distinct phases of flight. This allows
for a fine grid in phases that involve critical constraints
that need to be satisfied to ensure mission success, and
a coarser grid in the more benign phases of flight—thus
enabling one-shot multi-phase trajectory optimization. If
the solution converges to a feasible trajectory, the STCs are
guaranteed to be satisfied at the triggers (since the triggers
are imposed as waypoints as in Equation (14b)), and at
every discrete temporal node within the trigger window.

4. SEQUENTIAL CONIC OPTIMIZATION

4.1 Virtual state

Artificial infeasibility refers to the phenomenon wherein
a subproblem can become infeasible as a result of lin-
earization of the nonconvex constraints even if there exists
a feasible solution to the original problem. Typically,
unconstrained yet heavily penalized slack variables are
added to the linearized constraints, so as to ensure that
the subproblem is always feasible.

We propose a new approach to handling artificial infeasibil-
ity by means of a virtual state variable, which serves as a
copy of the original state. This approach helps decouple the
dynamics and control constraints from the state constraints
and exactly satisfy all the path constraints at each solver
iteration, while ensuring that the subproblem never turns
infeasible. If x is the actual state variable, u is the control
variable, and ξ is the virtual state variable, the dynamics
constraint is imposed on x and u, the control constraints
are imposed on u, and all the state constraints are imposed
on ξ.

To ensure that the dynamics and all other constraints are
satisfied at convergence, we minimize the error between x
and ξ by heavily penalizing the squared distance between
them in the objective function. The virtual state does not
alter the dynamics manifold (unlike the virtual control
approach (Szmuk et al., 2020; Reynolds et al., 2020b)),
and preserves the shapes of the conic state constraint sets
(unlike the virtual buffer approach (Malyuta et al., 2022)).

4.2 Conic subproblem

We impose a soft trust region on the decision variable
and use the penalized trust region (ptr) algorithm (Szmuk
et al., 2020; Reynolds et al., 2020a,b). The discretized conic

subproblem with virtual state(s) and a soft trust region is
shown in Problem (15), which is strongly convex.

min
u, s

wcJ(xN ) + 1
2 (wtrJtr + wvseJvse) (15a)

s.t. xk+1 = RHS of Eq. (11), k = 1:N−1 (15b)

ξk ∈ X , k = 1:N (15c)

uk ∈ U , k = 1:N (15d)

sk ∈ S , k = 1:nphase (15e)

where x ∈ Rnx is the state vector, ξ ∈ Rnx is the
virtual state vector, u ∈ Rnu is the control input vector,
and s ∈ R++ is the dilation factor (vector); X , U ,
and S are the state, control, and temporal constraint
sets, respectively, which are assumed to be closed and
convex; J(xN ) is the original cost function, assumed
to be in the Mayer form (Berkovitz, 2013), Jtr :=∑N

k=1

(
∥xk − xk∥22 + ∥uk − uk∥22

)
+

∑nphase

k=1 ∥sk − sk∥22 is

the trust region penalty, and Jvse :=
∑N

k=1 ∥xk − ξk∥22 is
the virtual state error penalty, wc, wtr, and wvse being their
respective weights.

Proposition 1. The virtual state error penalty, given by∑N
k=1 ∥xk − ξk∥22, is convex.

Proof. Let yk := (xk, ξk). ∴ ∥xk − ξk∥22 = y⊤k Myk, where

M =

(
1 −1

−1 1

)
⊗Inx

. Since specM ∈ {0, 2},M is positive

semidefinite (PSD). Therefore, the quadratic form, y⊤k Myk,
is convex. Since the sum of convex functions is convex,∑N

k=1 y
⊤
k Myk =

∑N
k=1 ∥xk − ξk∥22 is also convex. ■

Problem (15) can be vectorized, i.e., assembled into the
form of Problem (16), by stacking all the decision variables
into a single vector, z. For more details, see (Yu et al.,
2022a).

min
z

1

2
z⊤Qz + ⟨q, z⟩ (16a)

s.t. Hz − h = 0 (16b)

z ∈ D (16c)

5. HIGH-PERFORMANCE SOLVER

The proportional-integral projected gradient method (pipg)
(Yu et al., 2020, 2022b) is a first-order primal-dual opti-
mization algorithm for solving conic optimization problems
such as the one given by Equations (16). pipg is compatible
with extrapolation, which has been shown to improve its
practical convergence behavior. Here, we use the extrapo-
lated pipg algorithm, also denoted by xpipg, given by the
iterative sequence in Equation (17) (Yu et al., 2022a).

zj+1 = πD
[
ζj − α

(
Qζj + q +H⊤ηj

)]
(17a)

wj+1 = ηj + β
(
H
(
2zj+1 − ζj

)
− h

)
(17b)

ζj+1 = (1− ρ)ζj + ρzj+1 (17c)

ηj+1 = (1− ρ)ηj + ρwj+1 (17d)

where the primal variable, zj , converges to an optimum
of Problem (16) as j → ∞. The step-sizes, α and
β, are computed in accordance with (Yu et al., 2022a,
Lemma 2), and ρ ∈ [1, 2) is the extrapolation factor. We
leverage the warm-starting capability of pipg and use
the ℓ2-hypersphere preconditioning technique described in
(Kamath et al., 2023) to further accelerate convergence.



6. MULTI-PHASE ROCKET LANDING GUIDANCE

As a representative example for multi-phase rocket landing
guidance via seco, we consider the problem of terrestrial
precision landing of a vehicle akin to Starship, which is
designed to be a fully reusable rocket and currently in
development (Shotwell and Blackmore, 2021).

We consider a nonlinear planar model of the vehicle, given
by Equations (18), with x̂ being the vertical axis and ẑ
being the horizontal axis in the inertial frame (and the lon-
gitudinal and lateral axes in the body frame, respectively).
We use a simple, tractable aerodynamic model to account
for the aerodynamic effects on the vehicle during descent
(Szmuk et al., 2020). In practice, however, numerical
databases can be used along with seco (Mceowen and
Açıkmeşe, 2022). Further, with our approach, aerodynamic-
free polynomial coast-phase ballistic trajectory predictions,
such as the one provided in (Szmuk et al., 2020), are not
required. We note that (Lee and Lee, 2022) provide an
SCP-based 6-DoF multi-phase rocket landing guidance im-
plementation, but impose nonconvex STCs and implement
inexact (trapezoidal) discretization, unlike our approach.

The original state vector is defined as follows: x(t) :=
(m(t), r(t), v(t), θ(t), ω(t)), where m(t) ∈ R+ is the mass,
r(t) ∈ R2 is the position, v(t) ∈ R2 is the velocity, θ(t) ∈ R
is the body tilt angle with respect to the inertial vertical,
and ω(t) ∈ R is the angular velocity of the body.

The control input vector is defined as follows: u(t) :=
(T (t), δ(t)), where T (t) ∈ R is the thrust magnitude and
δ(t) ∈ R is the gimbal deflection angle.

Further, we define a virtual state vector and impose all the
state constraints, including the boundary conditions, on
this variable, in accordance with Subsection 4.1: ξ(t) :=(
mξ(t), rξ(t), vξ(t), θξ(t), ωξ(t)

)
.

ṁ(t) = −αeT (t) (18a)

ṙ(t) = v(t) (18b)

v̇(t) =
1

m(t)
(FI(t) +AI(t)) + g (18c)

θ̇(t) = ω(t) (18d)

ω̇(t) =
1

J(t)

(
FBẑ

(t) lcm −ABẑ
(t) ljcp

)
(18e)

where

αe :=
1

Ispg0
(19a)

FI(t) := T (t)

(
cos(θ(t) + δ(t))

−sin(θ(t) + δ(t))

)
(19b)

AI(t) := RI←B(t)AB(t) (19c)

FB(t) := T (t)

(
cos(δ(t))

−sin(δ(t))

)
(19d)

AB(t) := −ρairSarea∥v(t)∥2
2

CaeroR
⊤
I←B(t)v(t) (19e)

RI←B(t) :=

(
cos θ(t) sin θ(t)

− sin θ(t) cos θ(t)

)
(19f)

Here, αe ∈ R++ is the thrust-specific fuel consumption
(TSFC), Isp ∈ R++ is the specific impulse of the rocket
engine, g0 ∈ R++ is standard Earth gravitational accelera-
tion, g := (−g0, 0), RI←B(t) ∈ SO(2) is the rotation matrix
that maps coordinates in the body frame to the inertial

frame, ρair ∈ R++ is the ambient atmospheric density,
Sarea ∈ R++ is the reference area, Caero := diag{cx̂, cẑ}
is the aerodynamic coefficient matrix, where cx̂, cẑ ∈ R++

are the aerodynamic coefficients along the body x̂ and
ẑ axes, respectively, and J(t) ∈ R++ is the moment of
inertia of the vehicle about the body ŷ axis (out-of-plane).
The body of the vehicle is assumed to be a uniform
solid cylinder, and hence, the moment of inertia about

its central diameter is given by J(t) := m(t)
(

l2r
4 +

l2h
12

)
,

where lr ∈ R++ and lh ∈ R++ are the radius and height of
the fuselage, respectively.

The engines are assumed to be co-located, and the location
of the vehicle mass-center is assumed to be fixed in the
body frame. The thrust moment-arm (the distance between
the vehicle mass-center and the engine gimbal hinge point)
is denoted by lcm ∈ R++, and ljcp ∈ R+ is the aerodynamic
moment-arm (the distance between the vehicle mass-center
and the center-of-pressure), where j ∈ {0, 1}; j = 0 for
the unpowered phase of flight and j = 1 for the powered
phases of flight—l0cp is assumed to be maintained at zero via
independent aerodynamic controls by means of forward and
aft flaps (aerodynamic control surfaces), i.e., the center-of-
pressure and the mass-center are assumed to be coincident
when the vehicle is in the coast phase.

At the engine ignition (PDI) epoch, it is assumed that
the following events occur: (1) the forward flaps are fully
extended (to maximize drag towards the nose-cone); and,
(2) the aft flaps are fully folded (to minimize drag towards
the aft section of the vehicle). As a result, the center-of-
pressure shifts away from the mass-center, towards the
nose-cone, and induces an aerodynamic torque (pitching
moment) on the vehicle. Hence, l1cp is set to a nonzero value,
and it is kept fixed for the remainder of the trajectory. This,
along with gimbaling of the rocket engines, is used to induce
the flip maneuver to get the vehicle upright in preparation
for terminal descent.

The guidance problem is partitioned into four phases:
(1) the unpowered, subsonic coast phase; (2) the high-
thrust (3-engine) burn phase; (3) the low-thrust (1-engine)
burn phase; and, (4) the altitude-triggered terminal de-
scent phase, separated by the following important discrete
events/epochs: (1) powered-descent initiation (PDI) or en-
gine ignition, tignition; (2) engine downselection or switching
from a triple-engine burn to a single-engine burn, tswitch;
and, (3) altitude-based triggering of the terminal descent
phase, ttrigger. We emphasize that putting all of these phases
together implicitly leads to a free-ignition-time, free-engine-
switching-time, and free-final-time optimal control problem
(subject to the temporal constraints imposed).

For the discretized problem, the temporal grid we choose
is as given by Equation (20), where N is the number of
discrete temporal nodes and kignition, kswitch, and ktrigger
are the nodes at which the discrete events occur.

k ∈ {1, . . . , kignition, . . . , kswitch, . . . , ktrigger, . . . , N} (20)

6.1 Common constraints

The dynamics and temporal constraints are imposed over
the entire horizon. The dynamics constraint is given by
Equation (15b). The constraint given by Equation (21) is
imposed on the dilation factors to ensure they are bounded.
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Fig. 2. A real-time multi-phase rocket landing guidance solution obtained via seco.

smin ≤ sl ≤ smax, l ∈ {1:nphase} (21)

In order to enable the imposition of a single-crossing
compound STC in the altitude-triggered terminal descent
phase, we impose a minimum altitude constraint in the
first three phases, as given by Equation (22).

rξxk
≥ htrigger, k ∈ {1:ktrigger−1} (22)

6.2 The unpowered coast phase, k ∈ {1:kignition−1}

The center-of-pressure is coincident with the mass-center,
i.e., j = 0 and ljcp = l0cp = 0 in the dynamics. In
implementation, the thrust magnitude is set to zero (the
gimbal angle is inconsequential), and a zero-order hold
(ZOH) is assumed on the control input signal for this phase,
in order to avoid control input constraint violation when
the engines are ignited in the next phase. A first-order
hold (FOH) can also be assumed here, if the engine startup
time is significant and needs to be taken into account (with
appropriate constraints on the dilation factor).

The following initial conditions are imposed:

mξ
1 = mi, r

ξ
1 = ri, v

ξ
1 = vi,

θξ1 = θi, ω
ξ
1 = ωi, T1 = 0

(23)

wheremi, ri, vi, θi, and ωi are the initial values for the mass,
position, velocity, body tilt angle, and angular velocity,
respectively. The thrust magnitude at the first node is
constrained to be zero.

6.3 The high-thrust burn phase, k ∈ {kignition :kswitch−1}

The center-of-pressure shifts towards the nose-cone of the
vehicle, i.e., j = 1 and ljcp = l1cp > 0 in the dynamics.

We model this as a discrete change in its value, which is
then held constant for the remainder of the trajectory. The
following constraints are imposed on the control variables:

3Tmin ≤ Tk ≤ 3Tmax (24)

max{−δmax,−δ̇maxs̄k−1 + δ̄k−1} ≤ δk

≤ min{δmax, δ̇maxs̄k−1 + δ̄k−1}
(25)

where Tmin and Tmax are the lower and upper bounds
on the thrust magnitude for a single engine, respectively,
−δmax and δmax are the lower and upper bounds on
the gimbal deflection angle, respectively, and −δ̇max and
δ̇max are the lower and upper bounds on the gimbal rate,
respectively. Equation (25) combines the gimbal angle and
rate constraints, by using reference values in the lower
and upper bounds to make them constants and hence,
avoid overlapping projections on the same variable. This
constraint is, however, exact at convergence, and this
formulation has been observed to work well in practice.
Although there are only nphase dilation factor decision
variables, we consider the length of s̄ to be N−1, such that
the dilation factors are repeated to span each phase.

ZOH is assumed on the control input signal between
kswitch−1 and kswitch, in preparation for engine downs-
election, which marks the beginning of the next phase.
FOH can also be assumed here, if the engine shutdown
time is significant and needs to be accounted for. In order
to ensure that the gimbal deflection angle profile does not
have any discontinuities, we set the gimbal rate to zero
between these nodes, as shown in Equation (26).

δkswitch
= δ̄kswitch−1 (26)



6.4 The low-thrust burn phase, k ∈ {kswitch :ktrigger−1}

This phase is similar to the high-thrust burn phase, apart
from the fact that the switch from 3 to 1 engines occurs
at kswitch, and the bounds on the thrust magnitude are
changed accordingly, as shown in Equation (27). The
combined gimbal constraint is left unchanged from the
previous phase, and is shown in Equation (28). FOH is
assumed on the control input signal in this phase, and for
the remainder of the trajectory.

Tmin ≤ Tk ≤ Tmax (27)

max{−δmax,−δ̇maxs̄k−1 + δ̄k−1} ≤ δk

≤ min{δmax, δ̇maxs̄k−1 + δ̄k−1}
(28)

6.5 The terminal descent phase, k ∈ {ktrigger :N}

The final phase, the terminal descent phase, is the most
heavily and tightly constrained phase of flight. This is
designed as such in order to enable closed-loop precision
landing, i.e, to ensure that the generated guidance tra-
jectories (the feedforward control input signal and the
reference state profiles) are amenable to tight tracking
via feedback controllers. Such a phase would be especially
useful if sub-meter touchdown accuracy is required, for
instance, if the vehicle is to be retrieved by the launch
tower itself (Atkinson, 2022).

The constraint on the thrust magnitude is left unchanged
from the previous phase, and is shown in Equation (29).

Tmin ≤ Tk ≤ Tmax (29)

An altitude-triggered single-crossing compound STC, with
five constraint conditions, is imposed, as shown in Equa-
tions (30). The constraint conditions include the following:
maximum speed, maximum tilt, maximum angular speed,
glideslope, and tighter gimbal deflection bounds. The
altitude constraint forms the trigger condition. All of these
constraints are imposed in the interval k ∈ {ktrigger :N−1}.

rξxk

{
= htrigger, if k = ktrigger
≤ htrigger, otherwise

(30a)

|rξzk | ≤
{
tan γgs htrigger, if k = ktrigger

tan γgs r̄
ξ
xk
, otherwise

(30b)

∥vξk∥2 ≤ vmax (30c)

|θξk| ≤ θmax (30d)

|ωξ
k| ≤ ωmax (30e)

max{−δmaxTD
,−δ̇maxs̄k−1 + δ̄k−1} ≤ δk (30f)

≤ min{δmaxTD
, δ̇maxs̄k−1 + δ̄k−1}

The altitude and glideslope constraints are treated differ-
ently at the trigger epoch and after. The altitude constraint
is posed as an equality at the trigger—this ensures that the
constraint conditions are exactly satisfied at the trigger.
Further, the glideslope constraint is cast in the form of
box constraints in terms of the reference values, in order
to enable closed-form projections (without this measure,
there would be two constraints on rξxk

at every temporal
node, thus precluding closed-form projections). Similar to
the combined gimbal constraint, this constraint is exact at
convergence. The bounds on the gimbal deflection angle
are tightened in this phase as well, i.e., δmaxTD < δmax.

The following terminal boundary conditions are imposed:

mξ
N ≥ mdry, r

ξ
N = rf , v

ξ
N = vf ,

θξN = θf , ω
ξ
N = ωf , δN = 0

(31)

where mdry is the dry mass of the vehicle, and rf , vf , θf ,
and ωf are the terminal values for the position, velocity,
body tilt angle, and angular velocity, respectively. The
gimbal angle at the final node is constrained to be zero to
avoid plume-impingement on the retrieval structure.

6.6 The discrete seco subproblem

We define J(xN ) in Equation (15a) to be −mN , i.e., the
final mass of the vehicle is maximized (thus minimizing
propellant consumption). The discrete seco subproblem,
which is a second-order cone program (SOCP), can now be
given as follows:

min Objective function: Equation (15a)

s.t. Common constraints, Subsection 6.1:

Equations (15b), (21), and (22)

Coast phase, Subsection 6.2:

Equations (23)

High-thrust burn phase, Subsection 6.3:

Equations (24), (25), and (26)

Low-thrust burn phase, Subsection 6.4:

Equations (27) and (28)

Terminal descent phase, Subsection 6.5:

Equations (29), (30), and (31)

7. NUMERICAL RESULTS

For our numerical implementation of the multi-phase rocket
landing guidance algorithm, we choose a grid of N = 16
discrete temporal nodes, with one node allocated to the
unpowered coast phase, and 5 nodes allocated to each
of the remaining three phases of flight, i.e, kignition = 2,
kswitch = 7, ktrigger = 12. The following parameters are
used, where the ones pertaining to the vehicle/maneuver
were either estimated or obtained from public sources
(DeSisto, 2021; Sagliano et al., 2021; Malyuta et al., 2022).

g0 = 9.81ms−2, Isp = 330 s, lr = 4.5m, lh = 50m,

lcm = 0.4 lh, l
0
cp = 0m, l1cp = 0.2 lh, ρair = 1.225 kgm−3,

Sarea = 545m2, vterminal = 85ms−1, mi = 100000 kg,

cx̂ = 0.0522, cẑ = 0.4068, Tmax = 2200 kN, Tmin = 880 kN,

δmax = 10◦, δ̇max = 15◦s−1, htrigger = 100m, γgs = 5◦,

vmax = 20ms−1, θmax = 5◦, ωmax = 2.5◦s−1, δmaxTD
= 1◦,

mdry = 85000 kg, ri = (1000, 100)m, vi = (−90, 0)ms−1,

θi = 90◦, ωi = 0◦s−1, rf = (0, 0)m, vf = (0, 0)ms−1,

θf = 0◦, ωf = 0◦s−1, smin = 0.6 s, smax = 10 s

Averaged over 100 full seco solves, we report a mean run-
time of the pipg solver (to solve the entire nonconvex
problem) of 13.7 ms. In comparison, ecos1 requires 37.1
ms, on average, to solve the problem. For the comparison,
we assess the quality of the converged solutions in terms
of the difference in propellant consumption (0.02%) and
the number of seco iterations required to converge (7).
A real-time guidance solution obtained via pipg is shown
1For this problem, ecos is faster than both mosek and gurobi.



in Figure 2. Here, we observe that the optimizer chooses
to initiate the powered-descent phase at an altitude of
490.34 m and a speed of 86.28 ms−1 (which is very close to
the terminal velocity). Further, we note that the numerous
prototype flight tests and independent analyses corroborate
many of our observations (DeSisto, 2021).

8. CONCLUSIONS

We introduce seco, a novel matrix-inverse-free paradigm
for solving nonconvex optimal control problems in real-time,
and solve a multi-phase rocket landing guidance problem
with free-transition-time and convex state-triggered con-
straints. These solutions are computed using pipg, which
is almost three times faster than ecos, a state-of-the-art
convex optimization solver.
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