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Lyapunov-based synthesis of gradient-based algorithms for optimization and
saddle-point problems

1Gramlich, Dennis et al. “Synthesis of accelerated gradient algorithms for optimization and saddle

point problems using Lyapunov functions and LMIs.” Systems & Control Letters, 2022.
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Blackbox Optimization

Optimization Problem

minimize
x∈Rn

f (x)

Gradient Descent:[
A B

C D

]
=

[
Id −ηId
Id 0d

]

Gradient-based Algorithm

zk+1 = Azk + B∇f (Czk) where xk = Czk

Nesterov’s Accelerated Gradient:[
A B

C D

]
=

 (1 + β)Id −βId −αId
Id 0d 0d

(1 + β)Id −βId 0d


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Why Synthesis?

Synthesis provides a systematic way of generating optimal optimization algorithms
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Function Properties

λ-smoothness

∥∇f (x)−∇f (y)∥ ≤ λ∥x − y∥
µ-strong convexity

f (y) ≥ f (x) +∇f (x)⊤(y − x) +
µ

2
∥y − x∥22

κ = λ
µ
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Lyapunov Analysis

Nonlinear Dynamical system:

xk+1 = g(xk)

x∗ = g(x∗)

Lyapunov Function Assumptions:

α∥x − x∗∥22 ≤ V (x) ≤ β∥x − x∗∥22 ∀x ∈ Rn

V (xk+1)− ρ2V (xk) ≤ 0 ∀x ∈ Rn

Global Exponential Stability:

∥x∗ − xk∥ ≤
√

β

α
ρk∥x∗ − x0∥ ∀x0 ∈ Rn
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Linear Convergence

We can upper bound the convergence of algorithms with linear convergence as follows

|x∗ − xk | ≤ cρk
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Drawbacks of Gradient Descent

xk+1 = xk − η∇f (xk)
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Accelerated Algorithms

Polyak’s Heavy Ball:

xk+1 = yk − α∇f (xk)

yk = (1 + β)xk − βxk−1

Nesterov’s Accelerated Gradient:

xk+1 = yk − α∇f (yk)

yk = (1 + β)xk − βxk−1

Triple Momentum:

ξk+1 = (1 + β)ξk − βξk−1 − α∇f (yk)

yk = (1 + γ)ξk − γξk−1

xk = (1 + δ)ξk − δξk−1
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Accelerated Algorithms: Rates f (xk)− f ∗

Smooth → Sublinear Convergence

Smooth + Strongly Convex → Linear Convergence

For smooth and strongly convex functions, the algorithms have linear convergence, and
their rate to the optimal objective, ρ is shown in the table.

In the table, k is the iteration counter, and κ is the condition number.

Algorithm Smooth Smooth and Strongly Convex

Gradient Descent O(1/k) 1− 1/κ

NAG O(1/k2) 1− 1/
√
κ

TM - (1− 1/
√
κ)2
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Accelerated Algorithms
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Algorithm Analysis with IQCs1

G :

{
ξk+1 = Aξk + Buk
yk = Cξk

uk = ϕ(yk)

1Lessard, Laurant et al. “Analysis and design of optimization algorithms via integral quadratic

constraints.” SIAM Journal on Optimization, 2016.
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Sector Bounded Nonlinearity
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Lyapunov Approach for Synthesis

Function Sector Conditions

1

2
∥y − x∥2M ≤ f (y)− f (x)−∇f (x)⊤(y − x) ≤ 1

2
∥y − x∥2L

Write Lyapunov Function

V (x) =

[
x

∇f (Cx)

]⊤ [
P11 P12

P21 P22

] [
x

∇f (Cx)

]
+f (Cx)−f (0)−1

2
∇f (Cx)⊤L∇f (Cx)

Govind Chari Synthesis of First-Order Convex Solvers



15/20

Lyapunov Approach for Synthesis

Upper-bound Lyapunov Decrement
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Lyapunov Approach for Synthesis

Find Sufficient LMI for Lyapunov Decrement
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Lyapunov Approach for Synthesis

Construct synthesis LMI
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Numerical Results

∥x∗ − xk∥ ≤ cρk
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Related Work

Using IQCs to derive Triple Momentum1

Extension to non-strongly convex functions2

Synthesizing gradient-based algorithms that are robust to additive noise3

1Van Scoy, Bryan et al. “The fastest known globally convergent first-order method for minimizing

strongly convex functions.” IEEE Control System Letters, 2018.
2Fazlyab, Mahyar et al. “Analysis of optimization algorithms via integral quadratic constraints:

nonstrongly convex problems.” SIAM Journal of Optimization, 2018.
3Van Scoy, Bryan et al. “The Speed-Robustness Trade-Off for First-Order Methods with Additive

Gradient Noise.” arXiv, 2021.
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Future Work

Use IQCs to get tighter bounds on synthesized algorithms

Synthesize preconditioners using IQCs

Use dissipativity find tighter bounds on convergence of first-order conic
optimization algorithms1

1Yu, Yue et al. “Proportional-integral projected gradient method for conic optimization.”

Automatica, 2022.
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