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@ Authored by Dennis Gramlich, Christian Ebenbauer, Carsten W. Scherer
e Systems & Control Letters, 20221

@ Lyapunov-based synthesis of gradient-based algorithms for optimization and
saddle-point problems

1Gramlich, Dennis et al. “Synthesis of accelerated gradient algorithms for optimization and saddle
point problems using Lyapunov functions and LMIs.” Systems & Control Letters, 2022.
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Blackbox Optimization

Optimization Problem Gradient-based Algorithm

minimize  £(x) z11 = Azx + BV (Czx) where x, = Cz
xERnN
Gradient Descent: Nesterov's Accelerated Gradient:
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Why Synthesis?

Synthesis provides a systematic way of generating optimal optimization algorithms
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Function Properties

_ < Mlx — 0
IVFG) = Vi)l < Mix =l () > F()+ VAT (y =) + Slly = xI3
. Smoothness I
k=2
o

Govind Chari Synthesis of First-Order Convex Solvers



Lyapunov Analysis

Nonlinear Dynamical system:

Xk+1 = g(Xk)
x* = g(x")

Lyapunov Function Assumptions:

alx =x*3 < V(x) < Bllx = x*|3 vx e R
V(1) — p2V(x) <0 ¥x e R"

Global Exponential Stability:

I =l < 4/ 2okl gl o € B
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Linear Convergence

We can upper bound the convergence of algorithms with linear convergence as follows

| — x| < cp

Linear Convergence Rates

Linear Convergence Rates
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Drawbacks of Gradient Descent

Xk41 = Xk — NV F(xk)

81 Gradient Descent Iterates
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Accelerated Algorithms

Polyak’s Heavy Ball:

Xi41 = yk — aVf(xy)
Yk = (14 B)xk — Bxx—1

Nesterov’'s Accelerated Gradient:

Xk+1 = Yk — oV (yk)
Yk = (14 B)xx — Bxk—1
Triple Momentum:
Ekr1 = (14 B)ék — Bék—1 — oV (yk)

Yk = (L+7)8k — v€k-1
e = (14 0)&k — 6&k—1
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Accelerated Algorithms: Rates f(xx) — f*

@ Smooth — Sublinear Convergence

@ Smooth + Strongly Convex — Linear Convergence

For smooth and strongly convex functions, the algorithms have linear convergence, and

their rate to the optimal objective, p is shown in the table.

In the table, k is the iteration counter, and & is the condition number.

Algorithm Smooth | Smooth and Strongly Convex
Gradient Descent | O(1/k) | 1—1/k

NAG O/k®) | 1-1/\/r

™ - (1-1/Vk)?
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Accelerated Algorithms
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Convergence Upper Bounds for k = 1000
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Algorithm Analysis with IQCs!

ik = C&k
ue = ¢(y«)

G- {§k+1 = A&k + Buy
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(a) The auxiliary system ¥ produces z, (b) The nonlinearity ¢ is replaced by a con-
which is a filtered version of the signals y straint on z, so we may remove ¢ entirely.

and u.

!l essard, Laurant et al. “Analysis and design of optimization algorithms via integral quadratic

constraints.” SIAM Journal on Optimization, 2016.
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Sector Bounded Nonlinearity

Output 1(1)

A
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Lyapunov Approach for Synthesis

Function Sector Conditions

1 1
Slly = xIs < F) = £ = VFC) (v =) < Slly = xI?

Write Lyapunov Function

P11 Plz][ X

.
V(x):{w?&)} [le s vf(cx)}+f(Cx)—f(0)—;Vf(Cx)TLVf(Cx)
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Lyapunov Approach for Synthesis

Upper-bound Lyapunov Decrement

Vi(x) — p*Vp(x) <

x\ ' [=p*P11 —p*Pp | O 0 X
w —p?Py; —p*Py | O 0 w
xt 0 0 P, P, || x
wt 0 0 P,y Py wt
LT
N[00 [0 5 oy
I 0 0 | 0 2L w
X o oo IcT||x )
w™ A A7t rdl wt
~ic ' |lc I

where w = Vf(Cx), wt = Vf(Cx") and x* = Ax + Bw.
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Lyapunov Approach for Synthesis

Find Sufficient LMI for Lyapunov Decrement
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Lyapunov Approach for Synthesis

Construct synthesis LMI
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Numerical Results

X" = x| <

Convergence rate vs Condition Number
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Related Work

@ Using IQCs to derive Triple Momentum?!

e Extension to non-strongly convex functions?

@ Synthesizing gradient-based algorithms that are robust to additive noise>

1Van Scoy, Bryan et al. “The fastest known globally convergent first-order method for minimizing
strongly convex functions.” IEEE Control System Letters, 2018.

2Fazlyab, Mahyar et al. “Analysis of optimization algorithms via integral quadratic constraints:
nonstrongly convex problems.” SIAM Journal of Optimization, 2018.

3Van Scoy, Bryan et al. “The Speed-Robustness Trade-Off for First-Order Methods with Additive
Gradient Noise.” arXiv, 2021.
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@ Use IQCs to get tighter bounds on synthesized algorithms
@ Synthesize preconditioners using 1QCs

@ Use dissipativity find tighter bounds on convergence of first-order conic
optimization algorithms!

1Yu, Yue et al. "Proportional-integral projected gradient method for conic optimization.”
Automatica, 2022.
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