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a b s t r a c t

This paper considers the problem of designing accelerated gradient-based algorithms for optimization
and saddle-point problems. The class of objective functions is defined by a generalized sector condition.
This class of functions contains strongly convex functions with Lipschitz gradients but also non-convex
functions, which allows not only to address optimization problems but also saddle-point problems. The
proposed design procedure relies on a suitable class of Lyapunov functions and, for a fixed convergence
rate, is a convex semi-definite program in all but one scalar parameter. The proposed synthesis allows
the design of algorithms that reach the performance of state-of-the-art accelerated gradient methods
and beyond.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Gradient-based optimization algorithms are a standard tool
n science and engineering. Many of these algorithms take the
orm of feedback interconnection between a discrete-time linear
ystem and the gradient of the objective function. In case of a
onvex objective function, the corresponding gradient satisfies
certain sector condition. Hence such a feedback configuration

alls in the class of so called Lur’e systems [1], which have been
xtensively studied in control theory. In recent years, results
rom Lur’e systems and techniques from robust control theory
ave been exploited to analyze convergence rates and robustness
f known optimization algorithms and to design novel algo-
ithms. Some of those new publications rely on IQCs (integral
uadratic constraints) from robust control to generate conver-
ence results. For example, IQCs were used in [2] to find upper
ounds on the convergence rates of existing algorithms. This
ork was later extended to synthesis of algorithms in [3]. These

QC-based approaches gave rise to the development of the Triple
omentumMethod [4]. This method has the fastest known upper
onvergence bound for strongly convex functions with Lipschitz
radients. Other related work that analyzes optimization algo-
ithms from a dynamical systems perspective is for example given
n [5,6], where also Lyapunov function techniques and robust
ontrol theory are employed, or in [7], where discrete-time al-
orithms are analyzed based on continuous-time counterparts.
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In addition, in [8,9] semi-definite programming formulations are
proposed to analyze the convergence properties of first order
optimization methods. Further related results are discussed in
the recent paper [10], where the design of robust algorithms
for structured objective functions based on IQCs is considered.
Finally, in [11], the authors provide a semi-definite program for
the analysis of gradient based optimization algorithms, which can
be shown to find the fastest convergence rate that can be certified
by quadratic Lyapunov functions.

In this paper, we address convex design (convex synthesis)
of gradient-based algorithms for optimization and saddle point
problems, where the class of objective functions is defined by a
generalized sector condition. In particular, the contributions of
this paper are as follows. Firstly, we consider classes of functions
that are more general than the classes of strongly convex func-
tions usually considered in the literature. In particular, the classes
under consideration also contain non-convex functions, which we
utilize in our procedure to design algorithms capable of searching
for saddle points instead of minima. For example, the ability to
search for saddle points allows us to apply the design method to
optimization problems with equality constraints. Secondly, based
on a rather general class of Lyapunov functions, we derive convex
synthesis conditions for algorithm design in the form of linear
matrix inequalities. Specifically, we provide a non-conservative
convexification in the sense that the analysis matrix inequalities
(when algorithm parameters are given) are feasible if and only if
the synthesis matrix inequalities (when algorithm parameters are
decision variables) are feasible, i.e., our design procedure is not
more conservative than the corresponding analysis. This is in con-

trast to many other results in the literature, where the step from
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onvex analysis to convex synthesis is only possible by imposing
dditional assumptions (e.g. fixed IQC multipliers or quadratic
yapunov functions). In the case of strongly convex functions,
ur design procedure reaches the same convergence rates as the
riple Momentum Method and it allows to incorporate additional
tructural properties of the objective function to design tailored
lgorithms with even faster convergence rates, as demonstrated
n the paper.

otation

We denote the spectrum of a matrix by σ (A) and for the
spectral radius we will write ρ(A). We will use the notation
v∥2A = v⊤Av, which is a semi-norm if the matrix A is positive
emi-definite or a norm whenever A is positive definite. However,
ote that in most places, where we use the notation ∥v∥A, we
o not require A to be positive semi-definite. In large matrix
quations, we will sometimes write A⊤B(⋆) instead of A⊤BA with

(⋆) as a placeholder for A.

2. Problem statement and preliminary results

2.1. Problem statement

Consider the gradient based algorithm defined by

xk+1 = Axk + B∇f (Cxk), (1)

where xk ∈ Rn and the matrices A ∈ Rn×n,B ∈ Rn×d, C ∈ Rd×n are
the algorithm parameters to be designed. The objective function
f ∈ C1(Rd) is assumed to satisfy the following generalized sector
condition for all z1, z2 ∈ Rd:
1
2
∥z1 − z2∥2M ≤ f (z2)− f (z1)+ (∇f (z1))⊤(z1 − z2)

≤
1
2
∥z1 − z2∥2L, (2)

where M ⪯ L ∈ Rd×d are given symmetric matrices. In the
following, S(M, L) denotes the set of all C1 functions that satisfy
(2). Note that S(mId, lId), 0 < m < l, is the set of m-strongly con-
vex functions with l-Lipschitz continuous gradients. In addition,
any function f that is contained in S(M, L) is at least m-weakly
convex in the sense that z ↦→ f (z) + m

2 z
⊤z is convex for m =

ax eig(−M)∪{0}. Finally, in the case f ∈ C2(Rd), (2) is equivalent
o M ⪯ ∇2f (z) ⪯ L for all z ∈ Rd, where ∇2f denotes the Hessian
f f .

equirements. The algorithm design problem of this paper is
easible if and only ifM and L are non-singular and have the same
igenvalue signature. This design problem is formally stated as:

roblem 1. For given n ≥ d, M ⪯ L, and convergence rate ρ ∈
0, 1[, we aim to design matrices (A,B, C ) ∈ Rn×n

× Rn×d
× Rd×n

uch that there exists c ∈ R≥0 and for any f ∈ S(M, L) some
∗

f ∈ Rn such that

f (z∗f ) = 0 for z∗f := Cx∗f (3)

olds and for any x0 ∈ Rn the iterates xk of (1) satisfy

x∗f − xk∥ ≤ cρk
∥x∗f − x0∥, ∀k ∈ N0. (4)

In our setting, design (synthesis) refers to computing the algo-
ithm parameters (A,B, C ) by solving convex optimization prob-
ems, i.e., semi-definite programs.

Our goal is solving Problem 1. The following Problem 2 is
imilar to Problem 1, with the slight modification that all the
unctions f under consideration have their critical points in z∗f =
. This is favorable for the application of tools from robust control
heory, which are often formulated for fixed-points in zero.
 c

2

Problem 2. For given n ≥ d, symmetric matrices L̃ ⪰ 0 and M ,
and ρ ∈ [0, 1[, design matrices (̃A, B̃, C̃ ) ∈ Rn×n

× Rn×d
× Rd×n

uch that the constraint

(̃A− In)−1B̃M = Id (5)

s satisfied and there exists some c ∈ R≥0 such that for any
∈ S0(0, L̃) := {f ∈ S(0, L̃) : ∇f (0) = 0} and x0 ∈ Rn the iterates
f (1) satisfy

xk∥ ≤ cρk
∥x0∥, ∀k ∈ N0.

Theorem 1. Let symmetric matrices M ⪯ L be given, set L̃ :=
L−M and fix ρ ∈ [0, 1[. Then the matrices (A,B, C ) solve Problem 1
f and only if the matrices (̃A, B̃, C̃ ) solve Problem 2, where Ã =
+ BMC , B̃ = B, C̃ = C .

This theorem justifies that we can solve Problem 2 instead of
roblem 1. The proof of this theorem and all following ones can
e found in the appendix.

.2. Properties of the class S(M, L)

This subsection serves the purpose of introducing some impor-
ant properties of S(M, L). The first result gives some equivalent
haracterizations for when f ∈ S(0, L) holds true. Note, that these
onditions can be applied to any class S(M, L) by using the fact
∈ S(M, L)⇔ (z ↦→ f (z)− 1

2 z
⊤Mz) ∈ S(0, L −M).

Lemma 2 (Characterizations for f ∈ S(0, L)). Let L ⪰ 0 and
f ∈ C1(Rd). All conditions below, holding for all z1, z2 ∈ Rn, are
equivalent to f ∈ S(0, L):

(1) 0 ≤ f (z2)− f (z1)− (∇f (z1))⊤(z2 − z1) ≤ 1
2∥z1 − z2∥2L ,

(2) 0 ≤ (∇f (z1)−∇f (z2))⊤(z1 − z2) ≤ ∥z1 − z2∥2L ,
(3) 1

2∥∇f (z1) − ∇f (z2)∥
2
L† ≤ f (z2) − f (z1) + (∇f (z1))⊤(z1 − z2)

and Π ker L(∇f (z1)−∇f (z2)) = 0,
(4) ∥∇f (z1) − ∇f (z2)∥2L† ≤ (∇f (z1) − ∇f (z2))⊤(z1 − z2) and

Π ker L(∇f (z1)−∇f (z2)) = 0.

Not all possible variations of matrices M ⪯ L should be
onsidered for optimization. For example, if there exists a singular
atrix Q such that M ⪯ Q ⪯ L, then the function f defined by
(z) = 1

2 z
⊤Q z + v⊤z, where v is not in the range of Q , would be

an element of S(M, L) without any critical point. Therefore this
set S(M, L) would not make sense as a set of objective functions,
since we cannot solve Problem 1 for it. The following Lemma
characterizes when such cases can be avoided.

Lemma 3 (Well-posed Pairs M, L). Let M, L ∈ Rd×d be symmetric
matrices with M ⪯ L. Then the following five statements are
equivalent:

(1) The matrices M and L have the same numbers of positive and
negative, and no zero eigenvalues.

(2) Any symmetric matrix Q ∈ Rd×d with M ⪯ Q ⪯ L is
non-singular.

(3) L+M is non-singular and the spectral radius of (L+M)−1(L−
M) is smaller than one.

(4) M is non-singular and M−1L has only positive eigenvalues.
(5) M and L are non-singular and congruent, i.e., there exists a

non-singular matrix T ∈ Rd×d with M = T⊤LT .

emark 4. In Lemma 3, statement (1) serves the purpose of
iving the reader a good intuition for the property under con-
ideration. Statement (2) and (3) will be useful in later proofs.
ote that in particular (2) prevents the counter-example we
onstructed in the motivation of this lemma.
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Because of the importance of this property we define a new
notation for matrices M, L fulfilling one and thus all conditions
in Lemma 3.

Definition 5 (Loewner-congruence Ordering on Symmetric Matri-
ces). For symmetric matrices M, L ∈ Rd×d, we introduce the
partial ordering

L ⪰c M :⇔
{
L −M is positive semi-definite
L and M are congruent.

Under the Loewner-congruence ordering, a critical point ex-
ists, is unique, and a simple gradient method converges to the
critical point, as stated in the following results.

Proposition 6 (A simple Gradient Method). Let M ⪯ L ∈
Rd×d be non-singular. Then for any convergence rate ρ > ρ(
(L +M)−1(L −M)

)
there exists r ∈ R>0 such that

↦→ z − 2(M + L)−1∇f (z) (6)

is a contraction for all f ∈ S(M, L) with contraction constant ρ on
the Banach space (Rd, ∥ · ∥P ), where P = (L + M)((L − M)† +
rΠ ker(L−M))(L +M).

Remark 7. For M ⪯c L, the optimizer defined by (A,B, C ) with
A = C = Id and B = −2(L + M)−1 realizes the contraction
in Proposition 6. As a consequence of the Banach fixed-point
theorem, it converges faster than any convergence rate ρ >

ρgrad := ρ
(
(L +M)−1(L −M)

)
and converges monotonically in

the norm ∥ · ∥P to the unique critical point. Finally, notice that
in the case L − M is singular, the infimal convergence rate may
not be attained, since r can go towards infinity as ρ converges
towards ρgrad. However, if L−M is non-singular, then r disappears
and the constructed gradient method converges at the rate ρgrad.

Theorem 8 (Existence and Uniqueness of Critical Points). Let M ⪯
L ∈ Rd×d be given symmetric, non-singular matrices. Then the
following three statements are equivalent:

(1) The matrices M , L satisfy M ⪯c L.
(2) For all f ∈ S(M, L) there exists at least one z∗f ∈ Rd with
∇f (z∗f ) = 0.

(3) For all f ∈ S(M, L) there exists at most one z∗f ∈ Rd with
∇f (z∗f ) = 0.

Remark 9. Theorem 8 shows that if we aim to design algorithms
that are convergent for the whole class S(M, L), we need to
require M ⪯c L, because otherwise there would be elements
of S(M, L) without critical points. Hence the introduced partial
ordering plays a key role in our results. Note that it is no coin-
cidence that in Theorem 8 the existence of critical points for all
functions in S(M, L) and the uniqueness of critical points are two
separate, equivalent statements.

3. Main results

In this section, a convex synthesis approach of optimizer pa-
rameters (A,B, C ) for a given convergence rate and for the set of
objective functions S(M, L) is provided. By Theorem 1, the design
for S(M, L) reduces to designing algorithms for S0(0, L̃) = {f ∈
S(0, L̃)|∇f (0) = 0} with L̃ = L −M . Hence, we study Problem 2
instead of Problem 1.
 T

3

3.1. A class of Lyapunov functions

To design the algorithm parameters (A,B, C ) with a pre-
described convergence rate, we propose the following class of
(non-quadratic) Lyapunov function candidates

Vf (x) =
(

x
∇f (Cx)

)⊤ (P11 P12
P21 P22

)(
x

∇f (Cx)

)
+ f (Cx)− f (0)−

1
2
∇f (Cx)⊤L̃†

∇f (Cx) (7)

with parameter 0 ≺ P = P⊤ ∈ Rn+d×n+d. In continuous-time,
similar Lyapunov functions have already been applied to Lur’e
systems. Those Lyapunov functions share the first term, which is
quadratic in the state x and the static non-linearity ∇f (z). They
have been proposed by Yakubovic for d = 1 in [12] and are
employed e.g. in [13–15].

Our design approach, for a given convergence rate ρ, is based
on finding a Lyapunov function (P ≻ 0) and algorithm parameters
by semi-definite programming satisfying the conditions in the
next standard Lyapunov theorem.

Theorem 10. Consider the algorithm (1) for (A,B, C ) ∈ Rn×n
×

Rn×d
× Rd×n and f ∈ C1(Rd) with ∇f (x∗f ) = 0. Let there exist some

function V : Rd
→ R and α > 0, β > 0 satisfying the quadratic

bounds

α∥x− x∗f ∥
2
≤ V (x) ≤ β∥x− x∗f ∥

2
∀x ∈ Rn (8)

and the ρ-weighted increment inequality

V (x+)− ρ2V (x) ≤ 0 ∀x ∈ Rn, (9)

where x+ = Ax + B∇f (Cx). Then (4) holds for some c ∈ R≥0 with
c ≤
√

β/α.

The following two lemmas provide useful bounds for the con-
stants α and β in (8) and the increment (9) of the Lyapunov
function candidate Vf in (7).

Lemma 11 (Upper Bound on the Lyapunov Increment of Vf ). Assume
∈ S0(0, L̃). Then, the weighted increment (9) for Vf is upper

ounded as follows for arbitrary λ ∈ [0, ρ2
]:

f (x+)− ρ2Vf (x) ≤⎛⎜⎝ x
w

x+
w+

⎞⎟⎠
⊤⎛⎜⎝−ρ2P11 −ρ2P12 0 0
−ρ2P21 −ρ2P22 0 0

0 0 P11 P12
0 0 P21 P22

⎞⎟⎠
⎛⎜⎝ x

w

x+
w+

⎞⎟⎠

+

⎛⎜⎝ x
w

x+
w+

⎞⎟⎠
⊤
⎛⎜⎜⎝

0 0 0 −
λ
2C
⊤

0 0 0 λ
2 L̃

†

0 0 0 1
2C
⊤

−
λ
2C

λ
2 L̃

† 1
2C −L̃†

⎞⎟⎟⎠
⎛⎜⎝ x

w

x+
w+

⎞⎟⎠ ,

where w = ∇f (Cx), w+ = ∇f (Cx+) and x+ = Ax+ Bw.

Lemma 12 (Quadratic Bounds on Vf ). Let f ∈ S0(0, L̃) be given.
Then the Lyapunov function candidate Vf fulfills the quadratic
bounds

α∥x∥2 ≤ Vf (x) ≤ β∥x∥2

ith the constants α := λmin(P) and β := λmax(P)(1+∥̃L∥2∥C∥2)+
∥̃L∥∥C∥2

2 .

.2. Convex synthesis of algorithms

The following theorem reformulates the condition (9) in
heorem 10 using the established bound in Lemma 11.
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heorem 13 (Analysis Inequalities). Let A ∈ Rn×n,B ∈ Rn×d

nd C ∈ Rd×n be given. Set Ã = A + BMC . Then Algorithm (1)
olves Problem 1 and has convergence rate ρ ∈ [0, 1[, if there exist
= P⊤ ≻ 0, λ ∈ [0, ρ2

] and r ∈ R such that Id = C (̃A− I)−1BM
see (5)) is satisfied and

In 0 0
0 Id 0
Ã B 0
0 0 Id

⎞⎟⎠
⊤⎛⎜⎝−ρ2P11 −ρ2P12 0 0
−ρ2P21 −ρ2P22 0 0

0 0 P11 P12
0 0 P21 P22

⎞⎟⎠ (⋆)

⎛⎜⎝In 0 0
0 Id 0
Ã B 0
0 0 Id

⎞⎟⎠
⊤
⎛⎜⎜⎝

0 0 0 −
λ
2C
⊤

0 −rΠ 0 λ
2 L̃

†

0 0 0 1
2C
⊤

−
λ
2C

λ
2 L̃

† 1
2C −L̃†

− rΠ

⎞⎟⎟⎠ (⋆)

≺ 0 (10)

olds, where L̃ = L −M and Π = Π ker(L−M).

Theorem 13 provides sufficient conditions for a given algo-
ithm to achieve a convergence rate ρ. Notice that the conditions
n Theorem 13 are affine in the positive definite decision vari-
ble P and hence semi-definite programming can be used to
erify these conditions. For the synthesis of algorithms, i.e., if
n addition to P also A,B, C are decision variables, the decision
variables enter in a non-affine (non-convex) fashion and thus, an
efficient synthesis of algorithms with semi-define programming
is not possible. Hence, it is of key importance to find equivalent
conditions in terms of matrix inequalities and equations in which
the decision variables enter in an affine fashion. The following
theorem shows that this is indeed possible.

Theorem 14 (Synthesis Inequalities). Let n ≥ 3d. Then there
exist matrices A ∈ Rn×n,B ∈ Rn×d, C ∈ Rd×n, which render the
conditions (5) and (10) in Theorem 13 for a given convergence rate
ρ feasible, if and only if there exist Â ∈ Rn×n, B̂ ∈ Rn×d, C ∈
Rd×n, P = P⊤ ∈ Rn+d×n+d, r ∈ R and λ ∈ [0, ρ2

] which satisfy
the matrix inequality⎛⎜⎜⎜⎜⎝
−ρ2P11 −ρ2P12 ∗ ∗ ∗

−ρ2P21 −ρ2P22 − rΠ ∗ ∗ ∗

1
2 J2Â−

λ
2C

1
2 J2B̂+

λ
2 L̃

†
−L̃†
− rΠ ∗ ∗

Â B̂ P12 −P11 −P12

J3Â J3B̂ P22 −P21 −P22

⎞⎟⎟⎟⎟⎠
≺ 0 (11)

nd the affine constraints

B̂ = (Â− P11)J⊤1 M
−1, CJ⊤1 = Id,

C = J2P11, P21 = J3P11,
(12)

here L̃ := L−M , Π := Π ker(L−M) and J1, J2, J3 ∈ Rd×n are given
s

1 =
(
Id 0

)
, J2 =

(
0d Id 0

)
, J3 =

(
0d 0d Id 0

)
.

ith a solution of (11) and (12), the conditions (5) and (10) in
heorem 13 are feasible with the algorithm parameters

:= P−111 Â− BMC , B := P−111 B̂ and C .

The conditions for synthesizing algorithms from Theorem 14
re only sufficient, since this is true for analysis based on
heorem 13. The conservatism essentially depends on the choice
f the Lyapunov function Vf and the estimates in Lemma 11. By
aking use of Theorems 13 and 14, we show in the following

esult that one can always achieve the convergence rate of the
radient method from Proposition 6. Still, the numerical results
4

in Section 4 reveal that it is indeed possible to exceed this rate
by designing dedicated algorithms.

Theorem 15 (Guaranteed Feasibility for the Gradient Method). Let
M ⪯c L hold. Then the following statements are true:

(1) The gradient method defined by (A,B, C ) with A = Id,
B = −2(L + M)−1, C = Id fulfills the conditions (10)
and (5) of Theorem 13 for any ρ ∈]ρgrad, 1], where ρgrad =

ρ
(
(L +M)−1(L −M)

)
.

(2) If n ≥ 3d, then there exists a solution to (11) and (12) in
Theorem 14 for any ρ ∈]ρgrad, 1].

This result is similar to one of [11], in which the authors
show that their analysis techniques can certify the fastest con-
vergence rates that can be achieved with quadratic Lyapunov
functions. Our approach offers the advantage of using a class of
non-quadratic Lyapunov functions.

The rate ρgrad is the optimal convergence rate for the gradient
method from Proposition 6. On the other hand, if one minimizes
ρ simultaneously over all variables in Theorems 14, 15 implies
that one can achieve at least the rate ρgrad, while the examples in
Section 4 show that the optimal rate is typically smaller.

4. Examples and numerical results

In the following examples, the LMI formulation from
Theorem 14 is used to design optimization algorithms for three
problems. In this course, ρ is minimized using a bisection algo-
rithm to find a feasible solution of the matrix inequality (11).
Strictly speaking, synthesis based on Theorem 14 is not based on
solving an LMI if we consider λ as a decision variable. However,
one can optimize over the single scalar parameter λ by an ad-
ditional line search (see A.14). In case of the subsequent three
problems, λ could also just be set equal to ρ2 since this always
turned out to be the optimal value. In fact, the choice λ = ρ2 was
optimal for all problems with M ≻ 0 that we have ever tested.
Only when M ̸≻ 0, the optimal value for λ sometimes differed
from ρ2.

4.1. Convergence rates

To demonstrate the performance of our synthesis, we apply
it to the class S(m, l), 0 < m ≤ l,m, l ∈ R of strongly convex
functions, which is often considered in the literature (for example
in [2,10,16]). The algorithm parameters (A,B, C ) are computed
by solving (11) and (12) in Theorem 14 for λ = ρ2, where
ρ is optimized using a bisection search. Here, setting λ equal
to ρ2 is motivated by the proof of Lemma 11, where λ = ρ2

gives the tightest estimate on the increment of the Lyapunov
function. The obtained convergence rates are shown in Fig. 1,
where they are compared to the convergence rates of the Triple
Momentum method from [4] and the theoretical lower bound on
the convergence rates obtained by Nesterov. As can be observed,
our synthesized algorithm has the same convergence rates as the
Triple Momentum method. A result, that is also obtained in [3]
using an IQC based approach. In fact Triple Momentum and our
synthesized algorithm were basically identical, i.e., they produced
the same iterates zk.

4.2. Structured objective functions

The following (academic) example shall demonstrate the pos-
sible benefits of including additional properties of the objective
function into algorithm design compared to the design for S(m, l).
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Fig. 1. The convergence rate guarantees achieved by designing algorithms for
S(m, l) using Theorem 14 are plotted over the condition number l/m and
ompared to the rate bound of Triple Momentum ρ = 1−

√
m
√
l
and the theoretical

lower bound ρ =
√
l−
√
m

√
l+
√
m

from [16].

Consider the function class S(M, L) with

=

(
l−m+ m2

l 0
0 m

)
, L = S⊤

(
l 0
0 2m− m2

l

)
S,

S =

⎛⎝√1−
(m

l

)2
−

m
l

m
l

√
1−

(m
l

)2
⎞⎠ .

hese matrices fulfill mI ⪯ M ⪯c L ⪯ lI . Moreover, the largest
igenvalue of L is l and the smallest eigenvalue of M is m. Hence,
he best ‘‘standard method’’ for the class S(M, L) is a method for
(m, l) and has a convergence rate that is not faster than

√
l−
√
m

√
l+
√
m
.

The method designed using Theorem 14, on the other hand, has
at least the convergence rate ρ((M+L)−1(L−M)). Fig. 2 illustrates
these convergence rates together with the rate of a synthesized
algorithm. One can recognize that, in this example, the structured
method is superior to any unstructured method.

4.3. Application to constrained optimization

The class S(M, L) can contain non-convex functions. If both
M and L are indefinite but the condition M ⪯c L is fulfilled,
then S(M, L) is a class of functions with unique critical (saddle)
points. One particular saddle point problem can be obtained in
the context of convex constrained optimization. If one aims to
solve the (linearly) constrained optimization problem

minimize g(y),

subject to y ∈ Rd, Aeqy = beq,
(13)

where g ∈ S(M, L), Aeq ∈ Rd2×d and 0 ≺ M ≺ L holds (such that
g is strictly convex), then a solution can be found by solving the
saddle point problem

sup
λ∈Rd2

inf
y∈Rd

g(y)+ λ⊤(Aeqy− beq).

Here, the Lagrangian function L(y, λ) = g(y) + λ⊤(Aeqy − beq) is
an element of S(M L, LL), where

M L =

(
M A⊤eq
Aeq 0

)
, LL =

(
L A⊤eq
Aeq 0

)
. (14)

If M L ⪯c LL is satisfied, then our design procedure can be
applied to design a gradient based (primal–dual) algorithm for
 u

5

Fig. 2. Convergence rates achieved by the gradient descent algorithm in
Proposition 6 and by synthesis with Theorem 14 for S(M, L). Note that the
theoretical lower bound holds for the class S(m, l) and not for the subset
S(M, L) ⊂ S(m, l), because the subset contains fewer objective functions.

Fig. 3. Convergence rates achieved by the gradient descent algorithm in
Proposition 6 and by designing algorithms with Theorem 14 for a constrained
optimization problem.

f : z ↦→ L(z), where z = (y, λ). (This algorithm will then
onverge to a saddle point of L which solves the constrained
ptimization problem.) The following lemma shows under rather
ild conditions that this is possible.

emma 16. Let symmetric matrices M, L ∈ Rd×d and Aeq ∈ Rd2×d

be given. Assume that M ⪯c L holds with M, L being non-singular
and that Aeq has full row rank. Consider M L, LL defined in (14). Then
M L ⪯c LL holds, and M L and LL are non-singular.

As an academic example, consider the constrained optimiza-
tion problem (13) with g ∈ S(mI2, lI2) and Aeq = (1 1). As
described above, matrices M L ⪯c LL can be constructed such
that the Lagrangian L of this problem is in S(M L, LL). This enables
lgorithms of the form xk+1 = Axk + B∇L(Cxk) to be designed.
he algorithm parameters A,B, C can be designed by solving the
atrix inequality from Theorem 14. The results are presented in
ig. 3. For the sake of comparison, we added the rates of the
escent algorithm from Proposition 6. Interestingly, the conver-
ence rates are exactly equal to the convergence rates for the
nconstrained optimization problems. In general, we observed
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n our experiments that the convergence rates for linearly con-
trained optimization problems were often faster than those for
nconstrained problems, but never slower.
Compared to other works, as in [17], our example is rather

imple, involving only equality constraints. However, the purpose
f this example is to show the principle applicability of our
ethod to constrained optimization. The applicability to linear

nequality constraints is part of future work.
Notice that we have the condition n ≥ 3d in Theorem 14,

ence the algorithm with one equality constraint has at least di-
ension 9. However, it is often possible to reduce the dimension
f the algorithm as outlined below. For example, we consider
he algorithm parameters A,B, C for m = 1, l = 15 designed
sing Theorem 14. The original matrices had dimension n = 9.
e observed that the last three modes usually do not contribute
uch to the dynamics of the algorithm. Hence, it is possible to
liminate them using balanced truncation. We used Theorem 13
o check that the reduced algorithm still converges for S(m =
, l = 15). The reduced algorithm achieves a convergence rate of
t least 0.7422. which is faster than the rate of gradient descent,
hich is 0.8750 and exactly as fast as the unreduced algorithm.

n our example, we obtained the reduced parameters:

A =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0.0135 −0.0258 −0.0017
0 1 0 0.0135 0.0258 −0.0017
0 0 1 −0.6076 −0.0036 −0.0363
0 0 0 −0.3097 −0.0042 −0.0474
0 0 0 −0.0039 0.3909 −0.0002
0 0 0 1.1631 0.0070 0.5255

⎞⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎝
−0.0846 0.0707 −0.1978
0.0707 −0.0846 −0.1978
−0.2758 −0.2758 −3.2399
0.0860 0.0940 −4.7039
0.6738 −0.6727 −0.0264
0.0896 0.0900 6.3240

⎞⎟⎟⎟⎟⎟⎠ ,

=

(1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

)
.

ere, we have chosen a specific representation in which the first
columns of A are the first d unit vectors in Rn and C takes the

orm of an identity matrix concatenated with a zero block. The
xistence of such a representation is guaranteed by (5). From this
pecific representation, it can be extracted that Awill always have
eigenvalues at one. The modes with one eigenvalues play the

ole of a memory for the current best guess of the algorithm and
re therefore necessary.

emark 17 (On the Constant c in Problem 1). So far, we have
iscussed how to find algorithms of the form (1) which minimize
he convergence rate ρ in the convergence estimate (4). However,
he constant cf is also of importance for the performance of
lgorithms. Our results guarantee that such a constant exists. By
ombining Theorem 10 and Lemma 12, it is even possible to find
he upper bound

≤
√

β/α =

√
λmax(P)
λmin(P)

(1+ ∥̃L∥2∥C∥2)+
∥̃L∥∥C∥2

2λmin(P)
. (15)

irstly, notice that this upper bound does not directly depend on
he function f ∈ S(M, L) but only on A,B, C and L̃ = L − M .
econdly, notice that the upper bound grows with the condition
umber of the matrix P . This is not ideal, since the condition
umber of P can go to infinity when ρ is minimized toward
he feasibility limit. Numerical experiments showed that this can
ndeed happen. However, the true transient behavior of designed
ptimization algorithms was usually much better than the bound
btained by (15).
6

. Conclusion

We presented a convex synthesis procedure for designing
radient-based algorithms based on a general class of Lur’e Lya-
unov functions and linear matrix inequalities. The class of ob-
ective functions, which was considered, generalizes the class of
trongly convex functions and offers the possibility to incorporate
dditional information into the algorithm design. It should be
mphasized that this class of functions also includes non-convex
unctions — in particular functions which have a saddle point.
he usefulness of our novel function class was demonstrated,
irstly, by showing that additional information about the objective
unction can boost the convergence rate of algorithms consid-
rably and, secondly, by showing that it can be used to design
lgorithms for solving optimization problems with linear equality
onstraints.
Open future research questions are for example the design of

istributed algorithms or the design of optimization algorithms
or problems with inequality constraints.

RediT authorship contribution statement

Dennis Gramlich: Conceptualization, Methodology, Writing
original draft. Christian Ebenbauer: Supervision, Writing –

eview & editing. Carsten W. Scherer: Supervision, Writing –
eview & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The work of C.W. Scherer has been funded by Deutsche For-
chungsgemeinschaft (DFG, German Research Foundation) under
ermany’s Excellence Strategy - EXC 2075 - 390740016. He ac-
nowledges the support by the Stuttgart Center for Simulation
cience (SimTech).

ppendix. Proofs

.1. Projections and pseudo inverses

The pseudo inverse L† and projection matrix Π ker L and Π im L
nto the kernel/image of a symmetric matrix L are used at several
laces in this paper. Hence, some important formulas are summa-
ized below. Let A = U⊤ΣV be the singular value decomposition
f a matrix A, then

†
=

(
V 1
V 2

)⊤
  

V⊤

⎛⎜⎜⎜⎝
⎛⎜⎝σ−11

. . .

σ−1s

⎞⎟⎠ 0

0 0

⎞⎟⎟⎟⎠
  

Σ†

(
U1
U2

)
  

U

and Π kerA = V⊤2 V 2, Π imA = U1U⊤1 . We will particularly be
interested in the following four identities for the projectors and
pseudo inverses of a symmetric positive semidefinite matrix L,
̸= 0:

Π im L = LL†
= L†L, (16)

I = Π +Π , (17)
d im L ker L
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(L + rΠ ker L)−1 = L†
+

1
r
Π ker L, (18)

L†
+ rΠ ker L)−1 = L +

1
r
Π ker L . (19)

These identities follow from the singular value decomposition as
shown above.

A.2. Proof of Theorem 1

Notice that the proof of Theorem 1 relies on the properties
established in Section 2.2.

Step 1: The equivalence

f ∈ S(M, L)⇔ g ∈ S(0, L −M), (20)

where f and g are related by f (z) = g(z)+ 1
2 z
⊤Mz, will be used

throughout this proof. Subtracting 1
2∥z1 − z2∥2M from all terms in

2), we obtain

≤ g(z2)− g(z1)+ (∇g(z1))⊤(z1 − z2)

≤
1
2
∥z1 − z2∥2L−M ,

hich is the characterization of g ∈ S(0, L −M).
Step 2: (From Problems 1 to 2, convergence rate) Assume

hat (A,B, C ) solves Problem 1. We prove the convergence rate
f the algorithm defined by (̃A,B, C ) in Problem 2. Let g1 ∈
0(0, L̃) = S0(0, L − M) be an arbitrary function. Then f1(z) :=
1(z) + 1

2 z
⊤Mz is an element of S(M, L) due to (20). Moreover,

f1(0) = 0. Now consider the iterates of algorithm (1) with the
parameters (̃A,B, C ) for the objective function g1:

k+1 = Ãxk + B∇g1(Cxk)
= Axk + B(∇g1(Cxk)+MCxk)
= Axk + B∇f1(Cxk).

Since the matrix triple (A,B, C ) is assumed to solve Problem 1
and f1 ∈ S(M, L), we know that xk converges to x∗f1 at rate ρ for
ny x0 ∈ Rd. Notice that x∗f1 must be equal to zero, because zero is
globally attractive fixed-point of the considered iteration (since
0 + B∇f1(C0) = 0 by ∇f1(0) = 0) and such a fixed point must
e unique.
Step 3: (From Problems 1 to 2, constraint) It remains to

how satisfaction of the constraint (5). For this purpose define
2 ∈ S(M, L) for some z∗f2 ∈ Rd as f2(z) := 1

2 (z − z∗f2 )
⊤M(z − z∗f2 )

and note that it satisfies ∇f2(z∗f2 ) = 0. By assumption, Problem 1
is solved, meaning that the iterates of algorithm (1)

xk+1 = Axk + B∇f2(Cxk) = Axk + BM(Cxk − z∗f2 )

= Ãxk − BMz∗f2
converge to x∗f2 for any x0 at rate ρ. This implies firstly, that x∗f2 is
a solution of the fixed point equation

x∗f2 = Ãx∗f2 − BMz∗f2 (21)

and secondly that the spectral radius of Ã must be no larger than
ρ. Hence, Ã− In is non-singular. Then, (21) can be solved for x∗f2
yielding

x∗f2 = (̃A− In)−1BMz∗f2
(3)
= Cx∗f2 .

Since z∗f2 is arbitrary, C (̃A− In)−1BM = Id must hold.
Step 4: (From Problems 2 to 1, convergence rate) Now

ssume, that (̃A, B̃, C̃ ) is a solution of Problem 2. We prove that
A,B, C ) solves Problem 1. For that, we first consider all functions
∈ S(M, L) for which there exists a critical point z∗f . First let
∈ S(M, L) be given such that there exists z∗ with ∇f (z∗ ) = 0.
3 f3 f3

g

7

Then g3 defined by g3(z) = f3(z + z∗f3 )−
1
2 z
⊤Mz is an element of

S0(0, L −M) = S0(0, L̃) due to (20). Hence, the algorithm

x̃k+1 = Ãx̃k + B∇g3(C x̃k) (22)

converges to zero at rate ρ for any x0 ∈ Rn. Now add x∗f3 :=
(̃A− In)−1BMz∗f3 on both sides of the above equation and consider
the new sequence xk := x̃k + x∗f3 :

xk+1 = x̃k+1 + x∗f3
(22)
= Ãx̃k + B∇g3(C x̃k)+ x∗f3

= Ã(x̃k + x∗f3 )  
=Axk+BMCxk

+B∇g3(C x̃k)+ x∗f3 − Ãx∗f3  
(5)
=−BMz∗f3

= Axk + BM(Cxk − z∗f3 )+ B∇g3(C x̃k)
(5)
= Axk + BMC x̃k + B∇g3(C x̃k)  

=B∇f3(Cxk)

This is the equation for the iterates xk of the algorithm defined
by (A,B, C ) and f3. Since x̃k goes to zero at rate ρ, so does xk go
o x∗f3 .

Step 5: (From Problems 2 to 1, existence and uniqueness of
ritical points) Finally, we argue that there cannot be an element
f S(M, L) with no critical point: If there were an f ∈ S(M, L) with
wo critical points, then the arguments from Step 4 would prove
onvergence of (1) to both critical points, which cannot be true.
ence, there exists no such function in S(M, L). Consequently,
heorem 8 guarantees that any function in S(M, L) has a critical
oint and thus Step 4 covers all cases for which Problem 2 can be
olved. Therefore, (A,B, C ) solve Problem 1. □

.3. Proof of Lemma 2

(2)⇒ (1): The key to prove this statement is that the second
erm in inequality (1) can be written as the integral∫ 1

0
(∇f (z1 + τ (z2 − z1))−∇f (z1))⊤(z2 − z1) dτ

= f (z2)− f (z1)− (∇f (z1))⊤(z2 − z1). (23)

sing (2), the integrand can be upper and lower bounded as

≤ (∇f (z1 + τ (z2 − z1))−∇f (z1))⊤(z2 − z1)

=
1
τ
(∇f (z1 + τ (z2 − z1))−∇f (z1))⊤τ (z2 − z1)

≤
1
τ
∥τ (z1 − z2)∥2L = τ∥z1 − z2∥2L . (24)

pplying this estimate to the integral expression, we obtain

(z2)− f (z1)− (∇f (z1))⊤(z2 − z1)

(23)
=

∫ 1

0
(∇f (z1 + τ (z2 − z1))−∇f (z1))⊤(z2 − z1) dτ

(24)
≤

∫ 1

0
τ∥z1 − z2∥2L dτ = ∥z1 − z2∥2L

nd

≤

∫ 1

0
(∇f (z1 + τ (z2 − z1))−∇f (z1))⊤(z2 − z1)  

(24)
≥ 0

dτ

= f (z2)− f (z1)− (∇f (z1))⊤(z2 − z1),

which together imply (1).
(1) ⇒ (3): Let f ∈ C1(Rd) fulfill (1). Define g(z) = f (z) −
∇f (z1))⊤z. Then g ∈ S(0, L) and ∇g(z1) = 0 hold. Thus, z1 is
minimizer of g and we have

(z )− g(z ) ≤ g(z − z̃)− g(z )
1 2 2 2
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or any vector z̃ ∈ Rd. Here, we can add the term ∇g(z2)⊤z̃ on
both sides of the inequality to get

g(z1)− g(z2)+∇g(z2)⊤z̃ ≤ g(z2 − z̃)− g(z2)+∇g(z2)⊤z̃
(1)
≤

1
2
∥z̃∥2L .

y substituting A∇g(z2) for z̃, we get

g(z1)− g(z2)+∇g(z2)⊤A∇g(z2) ≤
1
2
∥A∇g(z2)∥2L

or any matrix A ∈ Rd×d or equivalently

g(z2)⊤A∇g(z2)−
1
2
∥A∇g(z2)∥2L ≤ g(z2)− g(z1).

ow, we substitute g(z2) = f (z2)− (∇f (z1))⊤z2 and obtain

∇f (z1)−∇f (z2))⊤A(∇f (z1)−∇f (z2))

−
1
2
∥A(∇f (z1)−∇f (z2))∥2L

≤f (z2)− f (z1)+ (∇f (z1))⊤(z1 − z2).

For A = L†, this is equivalent to

1
2
∥ ∇f (z1)−∇f (z2) ∥2L†

≤ f (z2)− f (z1)+ (∇f (z1))⊤(z1 − z2).

In the case A = rΠ ker L , the result is

r(∇f (z1)−∇f (z2))⊤Π ker L(∇f (z1)−∇f (z2))

≤ f (z2)− f (z1)+ (∇f (z1))⊤(z1 − z2),

which implies Π ker L(∇f (z1) − ∇f (z2)) = 0, because r can be
hosen arbitrarily large.
(3) ⇒ (4): Adding 1

2∥∇f (z1) − ∇f (z2)∥
2
L† ≤ f (z2) − f (z1) +

∇f (z1))⊤(z1 − z2) and 1
2∥∇f (z1) − ∇f (z2)∥

2
L† ≤ f (z1) − f (z2) +

∇f (z2))⊤(z2 − z1) yields inequality in (4).
(4)⇒ (2): Let f ∈ C1(Rd) fulfill (4). Then

L
√
L†(∇f (z1)−∇f (z2)) = (∇f (z1)−∇f (z2))

holds for all z1, z2 ∈ Rd, sinceΠ ker L(∇f (z1)−∇f (z2)) = 0 implies,
that ∇f (z1)−∇f (z2) is in the image of L. This observation can be
used to derive the bound using the Cauchy–Schwarz-Inequality
(CSI)

∥∇f (z1)−∇f (z2)∥2L†
(4)
≤ (∇f (z1)−∇f (z2))⊤(z1 − z2)

= (∇f (z1)−∇f (z2))⊤
√
L†
√
L(z1 − z2)

CSI
≤ ∥∇f (z1)−∇f (z2)∥L†∥z1 − z2∥L,

hich implies ∥∇f (z1) − ∇f (z2)∥L† ≤ ∥z1 − z2∥L . Now, f fulfills
2), because

∇f (z1)−∇f (z2))⊤(z1 − z2)
CSI
≤ ∥∇f (z1)−∇f (z2)∥L†∥z1 − z2∥L
≤ ∥z1 − z2∥2L . □

.4. Proof of Lemma 3

(1) ⇒ (2): Let Q with M ⪯ Q ⪯ L be given and let
λ
(M)
i )di=1, (λ

(Q )
i )di=1, (λ

(L)
i )di=1 be the eigenvalues of those matrices

n ascending order. It follows from M ⪯ Q ⪯ L and the theorem
f Courant–Fischer that
(M)
≤ λ

(Q )
≤ λ

(L)
, . . . , λ

(M)
≤ λ

(Q )
≤ λ

(L)

1 1 1 d d d

8

olds. Since λ
(M)
i and λ

(L)
i always have the same sign and are not

qual to zero by assumption, the values λ
(Q )
i cannot be zero for

ny i. Hence, no eigenvalue of Q can be zero and hence, Q is
invertible.

(2)⇒ (3): To show the first statement, consider the case Q =
1
2 (M+L). Then, it holds thatM ⪯ Q ⪯ L and hence, Q = 1

2 (M+L)
is invertible. To show the second statement, consider the case
Q = 1

2 (M + L) + α
2 (L − M). For α ∈ [−1, 1], it holds that

M ⪯ Q ⪯ L and thus

0 ̸= det
(
1
2
(M + L)+

α

2
(L −M)

)
∀α ∈ [−1, 1].

y non-singularity of (M + L), the factor det 1
2 (M + L) can be

ulled out of the above expression, which gives

̸= det
(
1
2
(M + L)

)
det

(
I + α(M + L)−1(L −M)

)
nd consequently

̸= det
(
I + α(M + L)−1(L −M)

)
∀α ∈ [−1, 1].

his implies, that (M + L)−1(L −M) cannot have eigenvalues in
\] − 1, 1[. However, since (M + L)−1(L − M) is similar to the
ymmetric matrix

√
L −M(M + L)−1

√
L −M , all of its eigenval-

ues have to be real. (Note that
√
L −M exists because L −M is

positive semi-definite.) Hence, all eigenvalues of (M+L)−1(L−M)
ave to be in ] − 1, 1[ and thus also ρ((M + L)−1(L − M)) < 1

holds.
(3)⇒ (4): Suppose that M is not invertible, i.e. there exists a

ector z ∈ Rd
\ {0} with Mz = 0. Then

(L +M)z = (L −M)z ⇒ z = (L +M)−1(L −M)z

mplies that z is an eigenvector to the eigenvalue 1 of (L +
)−1(L−M), which contradicts ρ((M+L)−1(L−M)) < 1. Hence
is non-singular.
Next we show σ (M−1L)⊆R>0. Consider the identity

L +M)−1(L −M) = I − 2(L +M)−1M
= I − 2(M−1L + I)−1.

uppose, that M−1L has an eigenvalue λ with associated eigen-
ector v. Then M−1L+ I has eigenvalue λ+ 1 with eigenvector v

and (M−1L + I)−1 has eigenvalue 1
λ+1 with eigenvector v. Thus

(L +M)−1(L −M)v = (I − 2(M−1L + I)−1)v

= v −
2

λ+ 1
v =

λ− 1
λ+ 1

v.

ence, λ−1
λ+1 is an eigenvalue of (L+M)−1(L−M) and thus it is in

]− 1, 1[. This implies λ ∈ R>0. Hence σ (M−1L)⊆R>0 holds true.
(4)⇒ (5): Suppose, that LM−1 has only positive eigenvalues.

hen there exists a symmetric positive definite matrix P ∈ Rd×d

uch that the Lyapunov inequality PLM−1 + M−1LP ≻ 0 is
atisfied. A congruence transform withM yieldsMPL+LPM ≻ 0.
y Lemma 19 we can infer that M and L are congruent.
(5) ⇒ (1): By Sylvester’s Law of Inertia, matrices have the

ame signature, if and only if they are congruent. □

.5. Proof of Proposition 6

We prove the contraction property of the map φ : z ↦→
z − 2(M + L)−1∇f (z), by using the norm ∥z∥2P = z⊤Pz, where
P = (L + M)((L − M)† + rΠ )(L + M). In a first step,
ker(L−M)
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r

φ

a
√

h

∥

∥

T

h

e
b

∇

p

A

A
t

V

=

+

N
V

V

w

A

f

f

ewrite φ as

(z) = (L +M)−1(L +M)z − 2(L +M)−1∇f (z)

= (L +M)−1 ((L −M)z − 2(∇f (z)−Mz))

= (L +M)−1 ((L −M)z − 2∇g(z))

with g ∈ S(0, L − M) defined by g(z) := f (z) − 1
2 z
⊤Mz. For the

following computation, remember that√
(L −M)†(L −M) =

√
(L −M)†

√
L −M

2

(16)
= Π im L−M

√
L −M =

√
L −M (25)

nd

L −M
√
(L −M)†(∇g(z1)−∇g(z2))

(16)
= Π im L−M (∇g(z1)−∇g(z2)) (26)
(17)
= (I −Π ker L−M )(∇g(z1)−∇g(z2))

Proposition 6
= ∇g(z1)−∇g(z2)

old. Consider now

φ(z1)− φ(z2)∥2P

=

√((L −M)† + rΠ ker(L−M)
)
(L +M) (φ(z1)− φ(z2))

2
=
√((L −M)† + rΠ ker(L−M)

)
(L +M)(L +M)−1

((L −M)(z1 − z2)− 2(∇g(z1)−∇g(z2)))
2

(⋆)
= ∥

√
(L −M)† ((L −M)(z1 − z2)− 2(∇g(z1)−∇g(z2))) ∥2

(25)
= ∥
√
L −M(z1 − z2)− 2

√
(L −M)†(∇g(z1)−∇g(z2))∥2

(26)
= 4∥∇g(z1)−∇g(z2)∥2(L−M)† − 4(∇g(z1)−∇g(z2))⊤(z1 − z2)  

≤0

+ ∥
√
L −M(z1 − z2)∥2 ≤ ∥z1 − z2∥2(L−M).

Concerning (⋆) notice, that the kernel projector has no contri-
bution, since the products are all zero and the under-braced
expression being non-positive follows from Lemma 2. Finally, by
Lemma 18 we know that for any ρ > ρgrad there exists some
r ∈ R>0 such that L−M ⪯ ρ2P holds. Hence, we can overestimate
z1 − z2∥2(L−M) by ρ2

∥z1 − z2∥2P (by choosing a sufficient value r)
resulting in the final estimate

∥φ(z1)− φ(z2)∥2P ≤ ∥z1 − z2∥2(L−M) ≤ ρ2
∥z1 − z2∥2P . □

A.6. Proof of Theorem 8

Note that S(M, L) is not empty since M ⪯ L. It remains to
show that the three statements in the theorem are equivalent
under the condition M ⪯ L.

(1) ⇒ (2) and (1) ⇒ (3): Assume M ⪯c L are non-singular.
Let f ∈ S(M, L) be given. Then, by Proposition 6, the mapping
φ : z ↦→ z − 2(M + L)−1∇f (z) is a contraction on Rd and (M + L)
is non-singular. By the Banach fixed point theorem the mapping
φ has exactly one fixed point z∗f with φ(z∗f ) = z∗f ⇔ ∇f (z

∗

f ) = 0.
his implies (2) and (3).
¬(1)⇒¬(2) and ¬(1)⇒¬(3): Suppose that M ⪯c L does not

old, but M ⪯ L holds. Then there exists Q = Q⊤ ∈ Rd×d with
M ⪯ Q ⪯ L and detQ = 0 by Lemma 3. Let v ∈ Rd

\ {0} be an
lement of the kernel of Q . Then the function f1 ∈ S(M, L) defined
y f1(z) = 1

2 z
⊤Q z + v⊤z has no critical point with ∇f (z) = 0,

because otherwise

v⊤∇f1(z) = v⊤(Q z + v) = v⊤Q z + v⊤v = ∥v∥2

would have to be zero. At the same time, the function f2 ∈ S(M, L)
defined by f2(z) = 1

2 z
⊤Q z has infinitely many critical points with

f2(z) = 0, because any point z = rv with r ∈ R is a critical
oint of f by ∇f (z) = rQ v = 0. □
2 2

9

.7. Proof of Lemma 11

Define the abbreviations w = ∇f (Cx), w+ = ∇f (Cx+), x+ =
x+ Bw and L̃ = L −M . With that the ρ-weighted increment of
he Lyapunov function is

f (x+)− ρ2Vf (x)(
x+
w+

)⊤ (P11 P12
P21 P22

)(
x+
w+

)
− ρ2

(
x
w

)⊤ (P11 P12
P21 P22

)(
x
w

)
f (Cx+)− f (0)−

1
2
∥w+∥2

L̃†
− ρ2

(
f (Cx)− f (0)−

1
2
∥w∥2

L̃†

)
  

I

.

To upper bound expression I , we use the estimate

−ρ2
≤−λ

(
f (Cx)− f (0)−

1
2
∥w∥2

L̃†

)
  

≥0

≤ −λ

(
f (Cx)− f (0)−

1
2
∥w∥2

L̃†

)
,

which we can use to obtain

I ≤ (1− λ)
(
f (Cx+)− f (0)+

1
2
∥w+∥2

L̃†

)
  

Lemma 2
≤ (w+)⊤(Cx+−0)

+ λ

(
f (Cx+)− f (Cx)+

1
2
∥w+ − w∥2

L̃†

)
  

Lemma 2
≤ (w+)⊤(Cx+−Cx)

−
(2− λ)

2
∥w+∥2

L̃†
−

λ

2
∥w+ − w∥2

L̃†
+

λ

2
∥w∥2

L̃†  
=(w+)⊤ L̃†(w+−λw)

≤ (1− λ)(w+)⊤Cx+ + λ(w+)⊤(Cx+ − Cx)

− (w+)⊤L̃†
(w+ − λw)

= (w+)⊤
(
Cx+ − λCx− L̃†

(w+ − λw)
)

.

ow, this estimate for expression I can be used to upper bound
f (x+)− ρ2Vf (x) as follows:

(x+)− ρ2V (x) ≤
(
x+
w+

)⊤ (P11 P12
P21 P22

)(
x+
w+

)
− ρ2

(
x
w

)⊤ (P11 P12
P21 P22

)(
x
w

)
+(w+)⊤

(
Cx+ − λCx− L̃†

(w+ − λw)
)

,

hich corresponds to the inequality in Lemma 11. □

.8. Proof of Lemma 12

Step 1 (upper bound). We can establish an upper bound on
(Cx)− f (0)− 1

2∇f (Cx)
⊤L̃†
∇f (Cx) by the estimates:

(Cx)− f (0)−
1
2
∇f (Cx)⊤L̃†

∇f (Cx)  
≤0

(⋆)
≤ f (Cx)− f (0)− (∇f (0))⊤(Cx− 0)  

Lemma 2
≤

1
2 ∥Cx−0∥

2
L̃

≤
∥L −M∥

∥Cx− 0∥2.

2
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N
∇

V

0

f

a
c
R

α

V

⎛⎜⎝
ote, that in (⋆) the term (∇f (0))⊤(Cx−0) can be added because
f (0) = 0. This allows the following bound on Vf :

f (x) =
(

x
∇f (Cx)

)⊤ (P11 P12
P21 P22

)(
x

∇f (Cx)

)
+ f (Cx)− f (0)−

1
2
∇f (Cx)⊤L̃†

∇f (Cx)

≤λmax(P)
( x
∇f (Cx)

)2 + ∥̃L∥2 ∥Cx∥2
=λmax(P)(∥x∥2 + ∥∇f (Cx)∥2  

≤∥̃L∥2∥Cx∥2

)+
∥̃L∥
2
∥Cx∥2

≤

(
λmax(P)(1+ ∥̃L∥2∥C∥2)+

∥̃L∥∥C∥2

2

)
∥x∥2

=β∥x∥2.

Step 2 (lower bound). We can establish a lower bound on
f (Cx)− f (0)− 1

2∇f (Cx)
⊤L̃†
∇f (Cx) by the estimate

≤ f (Cx)− f (0)−
1
2
∥∇f (Cx)∥2

L̃†
− (∇f (0))⊤Cx

= f (Cx)− f (0)−
1
2
∇f (Cx)⊤L̃†

∇f (Cx),

where the inequality sign follows from Lemma 2 and the equality
sign follows from the fact ∇f (0) = 0. This allows now the
ollowing lower bound on Vf :

Vf (x) =
(

x
∇f (Cx)

)⊤ (P11 P12
P21 P22

)(
x

∇f (Cx)

)
+ f (Cx)− f (0)−

1
2
∇f (Cx)⊤L̃†

∇f (Cx)  
≥0

≥

(
x

∇f (Cx)

)⊤ (P11 P12
P21 P22

)(
x

∇f (Cx)

)
≥ λmin(P)

( x
∇f (Cx)

)2
≥ λmin(P)∥x∥2 = α∥x∥2. □

A.9. Proof of Theorem 13

First recall that Theorem 1 shows that an algorithm with
parameters (A,B, C ) has convergence rate ρ for S(M, L) if an
algorithm with parameters (̃A,B, C ), which satisfy the constraint
(5), has convergence rate ρ for S0(0, L̃). Hence, in the following
we show convergence of (̃A,B, C ) for S0(0, L̃). By Theorem 10,
n algorithm defined by (̃A,B, C ) is asymptotically stable and has
onvergence rate ρ, if there exists a Lyapunov function Vf : Rn

→

, such that

∥x− x∗f ∥
2
≤ Vf (x) ≤ β∥x− x∗f ∥

2,

f (x+)− ρ2Vf (x) ≤ 0

holds for all x ∈ Rn and f ∈ S0(0, L̃) with β ≥ α > 0. The
considered class of Lyapunov function candidates fulfills these
requirements by Lemmas 12 and 11 if⎛⎜⎝ x

w

x+
+

⎞⎟⎠
⊤⎛⎜⎝−ρ2P11 −ρ2P12 0 0
−ρ2P21 −ρ2P22 0 0

0 0 P11 P12

⎞⎟⎠
⎛⎜⎝ x

w

x+
+

⎞⎟⎠

w 0 0 P21 P22 w

10
+

⎛⎜⎝ x
w

x+
w+

⎞⎟⎠
⎛⎜⎜⎝

0 0 0 −
λ
2C
⊤

0 0 0 λ
2 L̃

†

0 0 0 1
2C
⊤

−
λ
2C

λ
2 L̃

† 1
2C −L̃†

⎞⎟⎟⎠
⎛⎜⎝ x

w

x+
w+

⎞⎟⎠
is smaller than zero for all x ∈ Rn, w = ∇f (Cx), w+ = ∇f (Cx+)
and x+ = Ax+Bw. At this point we can even improve the estimate
by the observation that due to Lemma 2

0 = Π ker L̃(∇f (Cx)−∇f (z
∗

f )) = Π ker L̃w,

0 = Π ker L̃(∇f (Cx
+)−∇f (z∗f )) = Π ker L̃w

+

hold true. This implies, that the term⎛⎜⎝ x
w

x+
w+

⎞⎟⎠
⎛⎜⎝0 0 0 0
0 −rΠ ker L̃ 0 0
0 0 0 0
0 0 0 −rΠ L̃

⎞⎟⎠
⎛⎜⎝ x

w

x+
w+

⎞⎟⎠
is zero for all r ∈ R and can hence be added to the estimate. Since
the quantities x, w, x+, w+ are given by⎛⎜⎝ x

w

x+
w+

⎞⎟⎠ =
⎛⎜⎝In 0 0

0 Id 0
Ã B 0
0 0 Id

⎞⎟⎠( x
w

w+

)

negativity of Vf (x+) − ρ2Vf (x) follows now from (10). Hence, as
a consequence of Theorem 10, the algorithm defined by (̃A,B, C )
has convergence rate ρ for S0(0, L −M). □

A.10. Proof of Theorem 14

We need to show that the matrix inequality (11) in the trans-
formed variables Â, B̂, C , P is equivalent to (10). The proof of
this theorem works in two steps. The first step is to apply the
Schur complement to (10). The second (key) step is to define a
linearizing change of variables.

Step 1. First, define Z as follows⎛⎜⎝In 0 0
0 Id 0
Ã B 0
0 0 Id

⎞⎟⎠
⊤
⎛⎜⎜⎝

0 0 0 −
λ
2C
⊤

0 −rΠ 0 λ
2 L̃

†

0 0 0 1
2C
⊤

−
λ
2C

λ
2 L̃

† 1
2C −L̃†

− rΠ

⎞⎟⎟⎠ (⋆)

=

⎛⎜⎝ 0 0 1
2 Ã
⊤C⊤ − λ

2C
⊤

0 −rΠ 1
2B
⊤C⊤ + λ

2 L̃
†

1
2CÃ−

λ
2C

1
2CB+

λ
2 L̃

†
−L̃†
− rΠ

⎞⎟⎠ =: Z .

With Z , (10) becomes

In 0 0
0 Id 0
Ã B 0
0 0 Id

⎞⎟⎠
⊤⎛⎜⎝−ρ2P11 −ρ2P12 0 0
−ρ2P21 −ρ2P22 0 0

0 0 P11 P12
0 0 P21 P22

⎞⎟⎠ (⋆)+ Z

=

⎛⎜⎝
In 0 0
0 Id 0

P11Ã P11B P12

P21Ã P21B P22

⎞⎟⎠
⊤ (
−ρ2P 0

0 P−1

)
(⋆)+ Z ≺ 0.

The matrix P is positive definite by assumption of Theorem 13
and as a consequence of the matrix inequality from Theorem 14.
Hence, this algebraic manipulation allows to apply the Schur
complement, which states that the above inequality is equivalent
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t⎛⎜⎜⎜⎜⎝
b

(
(
s

C

O
P
B
e
w
w
s
(
t

t
P

(

t⎛⎝
a
(
a
B̂
s

J

R

T

F
t

T

p
m
h
P

R

Π
l
f
i⎛⎜⎝
m˜

C

f
a )
(

h⎛⎝
o
−ρ2P11 −ρ2P12 ∗ ∗ ∗

−ρ2P21 −ρ2P22 − rΠ ∗ ∗ ∗

1
2CÃ−

λ
2C

1
2CB+

λ
2 L̃

†
−L̃†
− rΠ ∗ ∗

P11Ã P11B P12 −P11 −P12

P21Ã P21B P22 −P21 −P22

⎞⎟⎟⎟⎟⎠
eing negative definite.
Step 2. If we have a solution (Â, B̂, . . .) of (11) and constraint

12), then we can just substitute Ã = P−111 Â,B = P−111 B̂ into
11) and we see that we obtain the above inequality and hence a
olution of (10). This solution also satisfies constraint (5) since

(̃A− In)−1BM = C (̃A− In)−1P−111 B̂M

= C (P11Ã− P11)−1B̂M

= C (Â− P11)−1B̂M
= CJ T1 = Id.

n the other hand, if we are given a solution of (10), (5) with
≻ 0 and we want to construct a solution of (11) by substituting
ˆ = P11B, Â = P11Ã and by expressing all the nonlinear
xpressions CÃ, P21Ã, P11Ã, CB, P21B, P11B in terms of Â and B̂,
e cannot guarantee that (12) holds. However, in the following
e show that there exists a state transformation of the algorithm
uch that this can be indeed guaranteed. Hence, any solution of
10), (5) is a solution of (11), (12) by an appropriate coordinate
ransformation.

If there exists a (non-singular) transformation matrix T such
hat the transformed variables Ã′ = T−1ÃT , B′ = T−1B, C ′ = CT ,
′

11 = T⊤P11T , P ′12 = T⊤P12, P ′21 = P21T , P ′22 = P22 fulfill

Ã′ − In)J⊤1 = B′M, J2P
′

11 = C ′, J3P
′

11 = P ′21,

hen we have

C ′̃A′

P ′21Ã
′

P ′11Ã
′

⎞⎠ = (J2J3
In

)
Â
′

,

( C ′B′
P ′21B

′

P ′11B
′

)
=

(J2
J3
In

)
B̂
′

nd the transformed variables still form a solution of inequality
10). The arguments from Step 1 show that in this case Ã′, B′, C ′

nd P ′ form also a solution of (11) and by substituting Â′ and
′
for the nonlinear terms it becomes clear that there exists a

olution to (11), (12) from Theorem 14.
Such a transformation T must now fulfill the constraints

2 T
⊤P11T  
=P ′11

= CT
=C ′

, J3T
⊤P11T = P21T

=P ′21

,

T−1 (̃A− In)T  
=Ã′−In

J⊤1 = T−1B  
=B′

M .

earranging and canceling terms above gives

J⊤1 = (̃A− In)−1BM, J2T
⊤
= CP−111 , J3T

⊤
= P21P−111 .

or the choice J1 = (Id 0d 0d 0), J2 = (0d Id 0d 0), J3 = (0d 0d Id 0),
hese equations have the solution

=
(
(̃A− In)−1BM P−T11 C T P−T11 P⊤21 T 4

)
,

rovided, that n ≥ 3d. It remains to show that the transfor-
ation is non-singular. Notice that (̃A − In)−1BM and C must
ave full rank because of C (̃A − In)−1BM = Id. Moreover
11, P21 can be slightly perturbed (without violating the strict

definiteness of P and the matrix inequality (10)), such that(
(̃A− In)−1BM P−T11 C T P−T11 P⊤21

)
has full rank too. Finally, T 4 ∈

n×n−3d can be chosen such that T is non-singular. Hence, all
11
constraints of Theorem 14 are satisfied by construction of T ,
where CJ1 = Id is implied by (5). Consequently, it is possible to
construct solutions related to Theorem 14 from solutions related
to Theorem 13 and vice versa. □

A.11. Proof of Theorem 15

Again, we introduce the abbreviations L̃ = L − M and Π =

ker L−M . In this proof, it will be necessary to find explicit so-
utions for the matrix inequality (10) from Theorem 13. There-
ore, it is purposeful to multiply out the matrix products in this
nequality for λ = 0, resulting in:

Ã⊤P11Ã− ρ2P11 Ã⊤P11B− ρ2P12 Ã⊤(P12 +
1
2C
⊤)

BP11Ã− ρ2P21 B⊤P11B− ρ2P22 − rΠ B⊤(P12 +
1
2C
⊤)

(P21 +
1
2C )̃A (P21 +

1
2C )B P22 − L̃†

− rΠ

⎞⎟⎠ .

(1) : This step will be quite lengthy. We will show, that the
atrices (̃A,B, C ) given by

A = A+ BMC = Id − 2(L +M)−1M
= (L +M)−1(L −M)

B = −2(L +M)−1

= Id

ulfill all the convergence rate conditions of Theorem 13 for an
rbitrary given ρ ∈]ρgrad, 1[. Here, the matrix Ã fulfills the Lya-

punov inequality Ã⊤P̃ Ã−ρ2P̃ ≺ 0 for P̃ := (L+M)
(
(L −M)† + rΠ

L +M) and large enough r ∈ R>0 by Lemma 18, since Ã⊤P̃ Ã =
L−M . To show, that the convergence conditions from Theorem 13
are met we choose λ = 0 and the following value for P:(
P11 P12
P21 P22

)
=

(
ρ2

4

(̃
P − ε(L +M)2

)
−

1
2 Id

−
1
2 Id L̃†

+ rΠ − ε
2 Id

)
,

where ε > 0, and r ∈ R is the same as above. There are three
things to show:

(1) The constraint (5) of Theorem 13 is satisfied for Ã,B, C .
(2) For large enough r and small enough ε, P solves the matrix

inequality (10) of Theorem 13.
(3) For large enough r and small enough ε, P is positive defi-

nite.

Verifying (1) can be done by a simple calculation of formulas in
the constraint.

We will now show (2). Note that (P21 +
1
2C ) =

1
2 (Id − Id) = 0

olds, which is why (10) from Theorem 13 simplifies to

Ã⊤P11Ã− ρ2P11 Ã⊤P11B− ρ2P12 0
BP11Ã− ρ2P21 B⊤P11B− ρ2P22 − rΠ 0

0 0 −
ε
2 Id

⎞⎠ ≺ 0.

Here it is left to show, that the left upper 2× 2 block can be made
negative definite by choosing r big and ε small. This is done by
dividing the matrix inequality by ρ2

4 and calculating the entries
of the left upper blocks:

The first block is
4
ρ2

(̃
A⊤P11Ã− ρ2P11

)
= Ã⊤

(̃
P − ε(L +M)2

)
Ã− ρ2 (̃P − ε(L +M)2

)
= Ã⊤P̃ Ã− ρ2P̃ − ε

(
(L −M)2 − ρ2(L +M)2

)
.
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T

T

B(

c
l
a

t
ρ

s
n

P

S
T
t
r
m

o
a
c

T

A

L
f
t

L

P
Π

ρ

H

o

c

L

he second block is
4
ρ2

(̃
A⊤P11B− ρ2P12

)
= 2Id + Ã⊤

(̃
P − ε(L +M)2

)
B

= 2Id − 2(L −M)
(
(L −M)† + rΠ

)
− 2ε(L −M)

= 2Id − 2 (L −M)(L −M)†  
(16)
= Π im(L−M)

−2r (L −M)Π  
=0

−2ε(L −M)

= 2Id − 2Π im(L−M) − 2ε(L −M)
(17)
= 2Π ker(L−M) − 2ε(L −M).

he third block is:
4
ρ2

(
B⊤P11B− ρ2P22 − rΠ

)
= B⊤P̃B− 4εId − 4

(̃
L†
+ rΠ −

ε

2
Id
)
−

4
ρ2 rΠ

= 4(̃L†
+ rΠ )− 4εId − 4

(̃
L†
+ rΠ −

ε

2
Id
)
−

4
ρ2 rΠ

= 4
(̃
L†
+ rΠ − L̃†

− rΠ
)
− 2εId −

4
ρ2 rΠ .

y the calculation of these blocks the upper 2 × 2 block is

Ã⊤P̃ Ã− ρ2P̃ − ε
(
(L −M)2 − ρ2(L +M)2

)
2Π − 2ε(L −M)

2Π − 2ε(L −M) −2εId − 4
ρ2 rΠ

)
,

which is negative definite for ε > 0 small enough and r big
enough.

Now it is left to show (3), namely that P is positive definite for
small enough ε and large enough r . Therefore, we can show that P
is positive definite for ε = 0. Then it will also be positive definite
for the small perturbation with ε > 0. By the Schur complement,
the matrix P for ε = 0 is positive definite if and only if:

0 ≺ L̃†
+ rΠ

0 ≺
ρ2

4
P̃ −

(
−

1
2
Id
)
(̃L†
+ rΠ )−1  

(19)
= (L−M)+ 1

r Π

(
−

1
2
Id
)

=
ρ2

4
P̃ −

1
4
(L −M)−

1
4r

Π .

Since ρ > ρgrad, the matrix ρ2P̃ − (L − M) is positive definite
by Lemma 18 and the matrix L̃†

+ rΠ is positive definite by
onstruction. Thus, ρ2

4 P̃− 1
4 (L−M)− 1

4rΠ is positive definite for
arge values of r . Hence, we only have to make ε small enough
nd r big enough, such that P becomes positive definite.
(2) : From (1) it is clear that we have a special solution to

he conditions in Theorem 13 for n = d and a convergence rate
∈ [ρgrad, 1[. Let Ã

(d)
,B(d), C (d), P (d) be this special solution. This

olution can be extended to a solution for arbitrary dimension
≥ d by setting

Ã =
(

Ã(d)
0d×n−d

0n−d×d 0n−d×n−d

)
,B =

(
B(d)

0n−d×d

)
,

C =
(
C (d) 0d×n−d.

)
, P22 = P (d)

22 ,

11 =

(
P (d)

11 0d×n−d
0n−d×d In−d

)
P12 =

(
P (d)

12
0n−d×d

)
.

howing that these values satisfy the constraints and the LMI of
heorem 13 is straight forward. Therefore, we get a solution to
he conditions in Theorem 13 for any n ≥ d for the convergence
ate ρ ∈ [ρgrad, 1[. As stated in Theorem 14, the constraints and
atrix inequality of this theorem are equivalent to the conditions
12
f Theorem 13 in the case n ≥ 3d. Hence, there exists also exists
solution to the conditions in Theorem 14 if n ≥ 3d for the

onsidered convergence rate ρ. □

A.12. Proof of Lemma 16

We have to check whether inequality (2) holds for the La-
grangian function L ∈ C1. Let therefore arbitrary values z1, z2 ∈
Rd and λ1, λ2 ∈ Rd2 be given. The lower bound in inequality (2)
follows from

1
2

(
z1 − z2
λ1 − λ2

)⊤ (
M A⊤eq
Aeq 0

)(
z1 − z2
λ1 − λ2

)
=

1
2
(z1 − z2)⊤M(z1 − z2)+ (λ1 − λ2)⊤Aeq(z1 − z2)

≤ f (z2)− f (z1)+ (∇f (z1))⊤(z1 − z2)

+ (λ1 − λ2)⊤Aeq(z1 − z2)

= f (z2)+ λ⊤2 (Aeqz2 − beq)  
L(z2,λ2)

− (f (z1)+ λ⊤1 (Aeqz1 − beq))  
L(z1,λ1)

+ (∇f (z1)+ A⊤eqλ1)⊤(z1 − z2)+ (λ1 − λ2)⊤(Aeqz1 − beq)  
(∇L(z1,λ1))⊤

(
z1 − z2
λ1 − λ2

)
.

he upper bound can be shown analogously. □

.13. Auxiliary results

emma 18. Let M ⪯c L be non-singular, symmetric matrices. Then
or any ρ > ρ

(
(M + L)−1(L −M)

)
there exists an r0 ∈ R>0 such

hat for all real numbers r ≥ r0

−M ≺ ρ2(L +M)
(
(L −M)† + rΠ ker L−M

)
(L +M).

roof. Let ρ > ρ
(
(M + L)−1(L −M)

)
be given. Define Π :=

ker L−M and

˜ := ρ

(
(L +M)−1

(
L −M +

1
r
Π

))
(⋆)
= ρ

(√
L −M +

1
r
Π (L +M)−1

√
L −M +

1
r
Π

)

=


√
L −M +

1
r
Π (L +M)−1

√
L −M +

1
r
Π

 .

ere, the equality (⋆) holds by a similarity transform with√
L −M + 1

r Π . This definition of ρ̃ implies the matrix inequality

ρ̃2Id ⪰

(√
L −M +

1
r
Π (L +M)−1

√
L −M +

1
r
Π

)2

.

A congruence transform with
(
L −M + 1

r Π
)− 1

2 (L +M) yields

ρ̃2(L +M)
(
(L −M)† + rΠ

)
(L +M) ⪰ L −M +

1
r
Π ,

since
(
L −M + 1

r Π
)− 1

2 (19)
=
√
(L −M)† + rΠ . By the expression

f ρ̃ through the spectral norm and the continuity of the norm,
ρ̃ converges to ρ

(
(M + L)−1(L −M)

)
for r →∞. Hence, we can

hoose r large enough, such that ρ̃ is small than ρ and thus,

−M ⪯ ρ̃2(L +M)
(
(L −M)† + rΠ ker L−M

)
(L +M)

≺ ρ2(L +M)
(
(L −M)† + rΠ ker L−M

)
(L +M).
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ince increasing r corresponds to adding a positive definite term
o the right hand side of this inequality, the inequality remains
alid for larger values of r . □

emma 19 (Congruence Lemma). Let M, L ∈ Rd×d be two sym-
etric matrices such that there exists a positive definite matrix P =
⊤
∈ Rd×d with MPL + LPM ≻ 0. Then M and L are congruent,

.e. there exists a non-singular matrix T such that T⊤MT = L.

roof. By P being positive definite, there exists a symmetric
ositive definite matrix

√
P ∈ Rd×d with

√
P

2
= P . A congruence

transform with
√
P yields

√
PM
√
P
√
PL
√
P +
√
PL
√
P
√
PM
√
P ≻ 0. (27)

The matrices M̃ :=
√
PM
√
P and L̃ :=

√
PL
√
P are congruent to

and L. Hence, it is sufficient to show that the matrices M̃ and
L are congruent.

Therefore, let T be an orthogonal matrix, such that

⊤M̃T =
(
D1 0
0 D2

)
,

here D1 is the diagonal matrix of all positive eigenvalues of M̃
nd D2 is the matrix of all negative eigenvalues of M̃ . Now, a
ongruence transform with T can be applied to (27):

≺ T⊤L̃M̃T + T⊤M̃L̃T
= T⊤L̃T  
:=E⊤

T⊤M̃T + T⊤M̃T T⊤L̃T  
:=E

=

(
E11 E12
E21 E22

)(
D1 0
0 D2

)
+

(
D1 0
0 D2

)(
E11 E12
E21 E22

)
.

rom this inequality, one can read off

11D1 + D1E11 ≻ 0, E22D2 + D2E22 ≻ 0

from the diagonal blocks. Hence, by the Lyapunov inequality,
E11 ≻ 0 and E22 ≺ 0. Now, E is positive definite on the sub-
space corresponding to E11 and negative definite on the subspace
corresponding to E22. Consequently, E has exactly dim E11 =

imD1 positive and exactly dim E22 = dimD2 negative eigen-
values according to Sylvester’s law of inertia. Thus the matrices
M and L, which are congruent to D and E , are congruent to each
other. □

A.14. Efficiently solving (11)

Let F (P, Â, B̂, Ĉ , r, λ, ρ2) ≺ 0 denote (11). To find the fastest
lgorithm which can be synthesized using Theorem 14, we solve
he optimization problem

inimize: ρ2 (28)

subject to F (P, Â, B̂, Ĉ , r, λ, ρ2) ≺ 0,

(12) and λ ∈ [0, ρ2
].

his problem is not convex, since F (P, Â, B̂, Ĉ , r, λ, ρ2) ≺ 0 may
e convex in P, Â, B̂, Ĉ and r , but not simultaneously in ρ2 and
. Therefore, we suggest the following procedure:
Line search for λ: Firstly, observe that a value for ρ2 is

easible, whenever there exists a λ ∈ [0, ρ2
] such that

(ρ2, λ) = inf
F (P,Â,B̂,Ĉ ,r,λ,ρ2)≺γ I,

(12)

γ < 0 (29)

olds, where J(ρ2, λ) can be computed by solving a semi-definite
rogram. Hence, we suggest the following algorithm:
13
Algorithm 1 Algorithm Synthesis
ρupper ← 1, ρlower ← 0, k← 0
while k ≤ kmax do

ρ ←
ρupper+ρlower

2
Compute γ = infλ∈[0,ρ2] J(ρ2, λ) by line search.
if γ < 0 then

ρupper ← ρ

else
ρlower ← ρ

end if
k← k+ 1

end while

This algorithm consists of an inner loop that minimizes J(ρ2, λ)
ver λ using a line search and thereby checks whether the current
alue of ρ2 is feasible, and an outer loop that optimizes over ρ2

sing a bisection search. Here, the use of a bisection search for ρ2

s justified, since investigating (11) yields that the feasible values
or ρ2 are going to be an interval (if there are any). As line search
lgorithm, we employed grid-search and golden sectioning. We
ropose the use of golden sectioning, since the function λ ↦→

(ρ2, λ) appeared to be convex in all experiments that we made
nd therefore golden sectioning should be faster. Nevertheless,
e always used a grid-search to backup the golden sectioning.
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